Ru nanoparticles on mesostructured carbon for glucose hydrogenation; catalysts synthesis and characterization
- Autores: Zaitseva Y.N.1, Sychev V.V.1, Sychev V.V.1,2, Golubkov V.А.1, Novikova S.А.1, Taran О.P.1,2, Kirik S.D.1,2
-
Afiliações:
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
- Siberian Federal University
- Edição: Volume 69, Nº 4 (2024)
- Páginas: 496-506
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/266823
- DOI: https://doi.org/10.31857/S0044457X24040059
- EDN: https://elibrary.ru/ZYPZOR
- ID: 266823
Citar
Resumo
Ru-containing hydrogenation catalysts based on functionalized carbon material CMK-3 (Carbon Mesostructured by KAIST) were developed. Mesostructured silicate SBA-15 with enlarged wall channels was used as a template for the carbon replica synthesis. The effect of carbon material functionalization via moist air oxidation and sulfonation on the morphology, physicochemical properties and activity of the catalyst was studied. The dispersion, localization, and electronic state of supported ruthenium were determined depending on the support functionalization method. The initial support structure preservation after Ru deposition was confirmed by a set of physicochemical methods. Metal particles are finely distributed with no agglomerated present, providing a high active site accessibility and ensures a superb catalyst activity. The catalysts were tested in glucose to sorbitol hydrogenation. The results showed that pore morphology and carbon support initial structure preservation account for the catalytic activity of Ru nanoparticles.
Palavras-chave
Sobre autores
Yu. Zaitseva
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036
V. Sychev
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036
V. Sychev
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660041
V. Golubkov
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036
S. Novikova
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036
О. Taran
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660041
S. Kirik
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University
Email: j-n-zaitseva@yandex.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660041
Bibliografia
- Demirbas A. // Energy Convers. Manage. 2009. V. 50. № 9. P. 2239. https://doi.org/10.1016/j.enconman.2009.05.010
- Awosusi A.A., Adebayo T.S., Altuntaş M. et al. // Energy Reports. 2022. V. 8. P. 1979. https://doi.org/https://doi.org/10.1016/j.egyr.2022.01.022
- Banu J.R., Kavitha S., Tyagi V.K. et al. // Fuel. 2021. V. 302. P. 121086. https://doi.org/10.1016/j.fuel.2021.121086
- Rowell R.M. Handbook of wood chemistry and wood composites. CRC press, 2012. 703 p.
- García B., Moreno J., Iglesias J. et al. // Top. Catal. 2019. V. 62. P. 570. https://doi.org/10.1007/s11244-019-01156-3
- Akpa B.S., D’Agostino C., Gladden L.F. et al. // J. Catal. 2012. V. 289. P. 30. https://doi.org/https://doi.org/10.1016/j.jcat.2012.01.011
- Maier S., Stass I., Cerdá J.I. et al. // Phys. Rev. Lett. 2014. V. 112. № 12. P. 126101. https://doi.org/10.1103/PhysRevLett.112.126101
- Tan J., Cui J., Deng T. et al. // ChemCatChem. 2015. V. 7. № 3. P. 508. https://doi.org/10.1002/cctc.201402834
- Ahorsu R., Constanti M., Medina F. // Ind. Eng. Chem. Res. 2021. V. 60. № 51. P. 18612. https://doi.org/10.1021/acs.iecr.1c02789
- Sudarsanam P., Zhong R., Van den Bosch S. et al. // Chem. Soc. Rev. 2018. V. 47. № 22. P. 8349. https://doi.org/10.1039/C8CS00410B
- Shrotri A., Kobayashi H., Fukuoka A. // Acc. Chem. Res. 2018. V. 51. № 3. P. 761. https://doi.org/10.1021/acs.accounts.7b00614
- Ryoo R., Joo S. H. // Stud. Surf. Sci. Catal. 2004. V. 148. P. 241. https://doi.org/10.1016/S0167-2991(04)80200-3
- Liang C., Li Z., Dai S. // Angew. Chem. Int. Ed. 2008. V. 47. № 20. P. 3696. https://doi.org/https://doi.org/10.1002/anie.200702046
- Воронова М.И., Суров О.В., Рублева Н.В., Захаров А.Г. // Журн. неорган. химии. 2022. T. 67. № 3. C. 416. https://doi.org/10.31857/S0044457X22030163
- Babaei Z., Yazdanpanah Esmaeilabad R., Orash N. et al. // Biomass Conversion and Biorefinery. 2023. V. 13. № 1. P. 61. https://doi.org/10.1007/s13399-020-01072-7
- Li L., Zhu Z.H., Lu G.Q. et al. // Carbon. 2007. Т. 45. № 1. Р. 11. https://doi.org/10.1016/j.carbon.2006.08.017
- Koskin A.P., Larichev Y.V., Mishakov I.V. et al. // Microporous Mesoporous Mater. 2020. V. 299. P. 110130. https://doi.org/10.1016/j.micromeso.2020.110130
- Аюшеев А.Б., Таран О.П., Афиногенова И.И. и др. // Журн. СФУ. Сер. Химия. 2016. Т. 9. № 3. C. 353. https://doi.org/10.17516/1998-2836-2016-9-3-353-370.
- Gao M., Wang L., Yang Y. et al. // ACS Catalysis. 2023. V. 13. № 7. P. 4060. https://doi.org/10.1021/acscatal.2c05894
- Verma P., Kuwahara Y., Mori K. et al. // Nanoscale. 2020. V. 12. № 21. P. 11333. https://doi.org/10.1039/D0NR00732C
- Grams J., Jankowska A., Goscianska J. // Microporous Mesoporous Mater. 2023. P. 112761. https://doi.org/10.1016/j.micromeso.2023.112761
- Zhao D., Huo Q., Feng J. et al. // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024. https://doi.org/10.1021/ja974025i
- Parfenov V.A., Ponomarenko I.V., Novikova S.A. // Mater. Chem. Phys. 2019. V. 232. P. 193. https://doi.org/10.1016/j.matchemphys.2019.04.087
- Jun S., Joo S.H., Ryoo R. et al. // J. Am. Chem. Soc. 2000. V. 122. № 43. P. 10712. https://doi.org/10.1021/ja002261e
- Taran O.P., Polyanskaya E.M., Ogorodnikova O.L. et al. // Catalysis Industry. 2010. V. 2. № 4. P. 381.
- Сычев В.В., Барышников С.В., Иванов И.П. и др. // Журн. СФУ. Сер. Химия. 2021. Т. 14 № 1. С. 5.
- Ruiz-Matute A.I., Hernández-Hernández O., Rodríguez-Sánchez S. et al. // J. Chromatogr. B. 2011. V. 879. № 17–18. P. 1226. https://doi.org/10.1016/j.jchromb.2010.11.013
- Шабанова Н.А., Саркисов П.Д. Золь-гель технологии. Нанодисперсный кремнезем. М.: Бином, 2012. 328 с.
- Yu Y., Zhang Q., Chen X. et al. // Fuel Processing Technology. 2020. V. 197. P. 106195. https://doi.org/10.1016/j.fuproc.2019.106195
- Ding Y., Li X., Pan H., Wu P. // Catal. Letters. 2014. V. 44. Р. 268. https://doi.org/10.1007/s10562-013-1137-9
- Solovyov L.A., Kirik S.D., Shmakov A.N., Romannikov V.N. // Microporous and Mesoporous Mater. 2001. Т. 44. P. 17. https://doi.org/10.1016/S1387-1811(01)00164-0
- Solovyov L.A., Shmakov A.N., Zaikovskii V.I. et al. // Carbon. 2002. V. 40. № 13. P. 2477. https://doi.org/10.1016/S0008-6223(02)00160-4
- Li H., Xu T., Wang C. et al. // J. Phys. D: Appl. Phys. 2004. V. 38. № 1. P. 62.
- Полянская Е.М., Таран О.П. // Вестник ТГУ. Сер. Химия. 2017. № 10. C. 6.
- Boehm H.-P., Knözinger H. // Catalysis: Science and Technology. Berlin: Springer, 1983. 207 p.
- Toebes M.L., van Dillen J.A., de Jong K.P. // J. Mol. Catal. A: Chem. 2001. V. 173. № 1–2. P. 75. https://doi.org/10.1016/s1381-1169(01)00146-7
- Taran O., Polyanskaya E., Ogorodnikova O. et al. // Catalysis Industry. 2010. V. 2. № 4. P. 381.
- Li X., Guo T., Xia Q. et al. // ACS Sustainable Chem. Eng. 2018. V. 6. № 3. P. 4390. https://doi.org/10.1021/acssuschemeng.8b00012
- Morgan D.J. // Surf. Interface Anal. 2015. V. 47. № 11. P. 1072. https://doi.org/10.1002/sia.5852
- Wang W., Guo S., Lee I. et al. // Scientific Reports. 2014. V. 4. № 1. P. 1. https://doi.org/10.1038/srep04452
- Kerdi F., Rass H.A., Pinel C. et al. // Appl. Catal. A. 2015. Т. 506. Р. 206. https://doi.org/10.1016/j.apcata.2015.09.002
- Komanoya T., Kobayashi H., Hara K. et al. // J. Energy Chem. 2013. V. 22. № 2. Р. 290. https://doi.org/10.1016/S2095-4956(13)60035-2
- Pizova H., Malanik M., Smejkal K. et al. // RSC Adv. 2022. V. 12. № 13. Р. 8188. https://doi.org/10.1039/D2RA00441K
- Hu J., Ding Y., Zhang H. et al. // RSC Adv. 2016. V. 6. № 4. P. 3235. https://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra24362a/unauth
- Ahmed M.J., Hameed B.H. // J. Taiwan Institute Chem. Eng. 2019. V. 96. P. 341. https://doi.org/https://doi.org/10.1016/j.jtice.2018.11.028
- Yin W., Tang Z., Venderboschet R.H. et al. // ACS Catalysis. 2016. V. 6. № 7. P. 4411. https://doi.org/10.1021/acscatal.6b00296
- Kobayashi H., Matsuhashi H., Komanoya T. et al. // Chem. Commun. 2011. V. 47. № 8. P. 2366. https://doi.org/10.1039/C0CC04311G
Arquivos suplementares
