Phase Equilibria Involving Solid Solutions in the Li–Eu–O System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Phase equilibria involving solid solutions in the Li–Eu–O system in an oxidizing, inert, and reducing atmospheres during annealing mixtures of various precursors subjected to preliminary mechanochemical activation at temperatures of 400–1100°C and partial pressures 
 ~ 21 and 0.01 kPa and 
  ~ 5 kPa have been studied by X-ray powder diffraction and thermogravimetry. The solubility of lithium in EuO has been first estimated, which is no less than 50–60%. For Eu2O3 and 
, it is 30% of the total amount of cations. Along with LiEuO2, the formation of crystalline mixed-valent (EuII + EuIII) phases LiEu3O4 and Li2Eu5O8 has been confirmed. The thermal behavior of solid solutions Eu1 – xLixO1 – δ based on europium monoxide and Li1 + yEu3O4 – γ in air has been studied. The concentration phase diagram of the Li–Eu–O system has been constructed.

Sobre autores

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gbuzanov@yandex.ru
119991, Moscow, Russia

G. Nipan

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: gbuzanov@yandex.ru
119991, Moscow, Russia

Bibliografia

  1. Matthias B.T., Bozorth R.M., Van Vleck J.H. // Phys. Rev. Lett. 1961. V. 7. № 5. P. 160. https://doi.org/10.1103/PhysRevLett.7.160
  2. Schmehl A., Vaithyanathan V., Herrnberger A. et al. // Nature Mater. 2007. V. 6 P. 882. https://doi.org/10.1038/nmat2012
  3. Steeneken P.G., Tjeng L.H., Elfimov I. et al. // Phys. Rev. Lett. 2002. V. 88. P. 047201. https://doi.org/10.1103/PhysRevLett.88.047201
  4. Hasegawa Y. // Chem. Lett. 2013. V. 42. № 1. P. 2. https://doi.org/10.1246/cl.2013.2
  5. Lettieri J., Vaithyanathan V., Eah S.K. et al. // Appl. Phys. Lett. 2003. V. 83. P. 975. https://doi.org/10.1063/1.1593832
  6. Borukhovich A.S. // Mod. Electron. Mater. 2020. V. 6. № 3. P. 113. https://doi.org/10.3897/j.moem.6.3.54583
  7. Borukhovich A.S., Troshin A.V. Europium Monoxide Semiconductor and Ferromagnet for Spintronics. Springer Series in Materials Science. Springer, 2018. V. 265. 189 p. https://doi.org/10.1007/978-3-319-76741-3
  8. Королева Л.И. Магнитные полупроводники. М.: Физический факультет МГУ, 2003. 312 с.
  9. Бамбуров В.Г., Борухович А.С., Самохвалов А.А. Введение в физико-химию ферромагнитных полупроводников. М.: Металлургия, 1988. 206 с.
  10. Parfenov O.E., Averyanov D.V., Tokmachev A.M. et al. // J. Condens. Matter Phys. 2016. V. 28. № 22. P. 226001. https://doi.org/10.1088/0953-8984/28/22/226001
  11. Kats V.N., Nefedov S.G., Shelukhin L.A. et al. // Appl. Mater. Today. 2020. V. 19. P. 100640. https://doi.org/10.1016/j.apmt.2020.100640
  12. Kabanov V., Korenyuk S., Fedorenko Y. // Thin Solid Films. 2001. V. 400. № 1–2. P. 116. https://doi.org/10.1016/s0040-6090(01)01469-9
  13. Hashimoto Y., Wakeshima M., Matsuhira K. et al. // Chem. Mater. 2002. V. 14. № 8. P. 3245. https://doi.org/10.1021/cm010728u
  14. Waintal A., Gondrand M. // Mater. Res. Bull. 1967. V. 2. № 9. P. 889. https://doi.org/10.1016/0025-5408(67)90099-2
  15. Julien C.M., Mauger A., Zaghib K., Groult H. // Inorganics. 2014. V. 2. № 1. P. 132. https://doi.org/10.3390/inorganics2010132
  16. Cantwell J.R., Roof I.P., Smith M.D. et al. // Solid State Sci. 2011. V. 13. № 5. P. 1006. https://doi.org/10.1016/j.solidstatesciences.2011.02.001
  17. Bärnighausen H. // Z. Anorg. Allg. Chem. 1970. V. 374. № 2. P. 201. https://doi.org/10.1002/zaac.19703740209
  18. Bärnighausen H. // Z. Anorg. Allg. Chem. 1967. V. 349. № 5–6. P. 280 https://doi.org/10.1002/zaac.19673490508
  19. Nyokong T., Greedan J.E. // Inorg. Chem. 1982. V. 21. № 1. P. 398. https://doi.org/10.1021/ic00131a071
  20. Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551. https://doi.org/10.1134/s0036023617050059
  21. Nipan G.D., Buzanov G.A., Zhizhin K.Y., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2016. V. 61. № 14. P. 1689. https://doi.org/10.1134/s0036023616140035
  22. Buzanov G.A., Nipan G.D., Zhizhin K.Y., Kuznetsov N.T. // Dokl. Chem. 2015. V. 465. V. 1. P. 268. https://doi.org/10.1134/s0012500815110063
  23. Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1035. https://doi.org/10.1134/S0036023622070051
  24. Chang K., Hallstedt B. // CALPHAD. 2011. V. 35. P. 160. https://doi.org/10.1016/j.calphad.2011.02.003
  25. Massalski T.B. Binary Alloy Phase Diagrams – 2nd edition. ASM International, Materials Park, Ohio, USA. 1990. 3589 p.
  26. Казенас Е.К., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 542 с.
  27. Sun Y., Qiao Z. // High Temp. Mater. Process. 1999. V. 3. № 1. P. 125. https://doi.org/10.1615/HighTempMatProc.v3.i1.110
  28. Rudolph D., Enseling D., Jüstel T., Schleid T. // Z. Anorg. Allg. Chem. 2017. V. 643. № 21. P. 1525. https://doi.org/10.1002/zaac.201700224
  29. Nakajima H., Nohira T., Ito Y. // Electrochem. Solid-State Lett. 2004. V. 7. № 5. P. E27. https://doi.org/10.1149/1.1664052

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (231KB)
3.

Baixar (368KB)
4.

Baixar (321KB)
5.

Baixar (278KB)
6.

Baixar (212KB)
7.

Baixar (202KB)

Declaração de direitos autorais © Г.А. Бузанов, Г.Д. Нипан, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies