Thermophysical Properties of Lanthanum and Samarium Zirconate—Hafnates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The synthesis and identification of lanthanum and samarium zirconate–hafnates of the pyrochlore structure type have been reported. The heat capacity of the samples in the temperature range 310–1380 K was measured by the differential scanning calorimetry method. The temperature dependences of the cubic lattice parameters were determined, and the thermal expansion coefficients were evaluated in the range 298–1273 K using high-temperature X-ray powder diffraction. The thermal diffusivity of the samples was measured by the laser flash method, and the temperature dependences of the thermal conductivity were calculated considering the porosity of the samples.

Sobre autores

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
119991, Moscow, Russia

A. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
119991, Moscow, Russia

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
119991, Moscow, Russia

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
119991, Moscow, Russia

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: gagarin@igic.ras.ru
119991, Moscow, Russia

Bibliografia

  1. Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
  2. Clarke D.R. // Surf. Coat. Techol. 2003. V. 163. P. 67. https://doi.org/10.1016/S0257-8972(02)00593-5
  3. Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. P. 917. https://doi.org/10.1557/mrs.2012.234
  4. Tejero-Martin D., Bennet C., Hussain T. // J. Eur. Ceram. Soc. 2021. V. 41. P. 1747. https://doi.org/10.1016/j.jeurceramsoc.2020.10.057
  5. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  6. Mikuskiewicz M., Migas D., Moskal G. // J. Surf. Coat. Technol. 2018. V. 354. P. 66. https://doi.org/10.1016/j.surfcoat.2018.08.096
  7. Liang P., Dong. S., Zeng J. et al. // Ceram. Int. 2019. V. 45. V. 22432. https://doi.org/10.1016/j.ceramint.2019.07.235
  8. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  9. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов: Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
  10. Wang Y., Ma Z., Liu L., Liu Y. // J. Adv. Ceram. 2021. V. 10. P. 1389. https://doi.org/10.1007/s40145-021-0514-x
  11. Chen H-F., Zhang C., Song P. et al. // Rare Metals. 2020. V. 39. P. 498. https://doi.org/10.1007/s12598-019-01307-1
  12. Cong L., Li W., Song Q. et al. // Corros. Sci. 2022. V. 209. P. 110714. https://doi.org/10.1016/j.corsci.2022.110714
  13. Poerschke D.L., Levi C.G. // J. Eur. Ceram. Soc. 2015. V. 35. P. 681. https://doi.org/10.1016/j.jeurceramsoc.2014.09.006
  14. Wu J., Wei X., Padture N.P. et al. // J. Am. Ceram. Soc. V. 85. P. 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
  15. Suresh G., Seenivasan G., Krishnaniah M.V. et al. // J. Nucl. Mater. 1997. V. 249. P. 259. https://doi.org/10.1016/s0022-3115(97)00235-3
  16. Suresh G., Seenivasan G., Krishnaniah M.V. et al. // J. Alloys Compd. 1998. V. 269. P. L9. https://doi.org/10.1016/s0925-8388(97)00629-4
  17. Lehmann H., Pitzer D., Pracht G. et al. // J. Am. Ceram. Soc. 2003. V. 86. P. 1338. https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  18. Govindan Kutti K.V.G., Rajagopalan S., Mathews C.K. // Mater. Res. Bull. 1994. V. 29. P. 759.https://doi.org/10.1016/0025-5408(94)90201-1
  19. Kutti K.V.G., Rajagopalan S., Asuvathraman R. // Thermochim. Acta. 1990. V. 168. P. 205. https://doi.org/10.1016/0040-6031(90)80639-G
  20. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. неорган. химии. 2021. Т. 66. С. 907. https://doi.org/10.31857/S0044457X21070059
  21. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Ceram. Int. 2019. V. 45. P. 20733. https://doi.org/10.1016/j.ceramint.2019.07.057
  22. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Неорган. материалы. 2021. Т. 57. С. 1073.
  23. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. неорган. химии. 2021. Т. 66. С. 1593. https://doi.org/10.31857/S0044457X2110088
  24. Guskov V.N., Tyurtin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  25. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Неорган. материалы. 2021. Т. 57. Р. 745. https://doi.org/10.31857/S0002337X21070071
  26. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040
  27. Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // ЖФХ. 2020. Т. 94. С. 163. https://doi.org/10.31857/S0044453720020120
  28. Сухаревский Б.Я., Зоз Е.И., Гавриш А.М. и др. // Докл. АН СССР. 1977. Т. 237. С. 589.
  29. Зоз Е.И., Гавриш А.М., Гулько Н.В. // Изв. АН СССР. Неорган. материалы. 1979. Т. 15. С. 109.
  30. Зоз Е.И., Яковенко Н.Г., Николаенко А.А. // Изв. АН СССР. Неорган. материалы. 1979. Т. 15. С. 310.
  31. Бакрадзе М.М., Доронин О.Н., Артеменко Н.И. и др. // Журн. неорган. химии. 2021. Т. 66. С. 695. https://doi.org/10.31857/S0044457X21050032
  32. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. С. 102.
  33. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892. https://doi.org/10.1016/j.ceramint.2020.09.072
  34. Powder diffraction files (Inorganic Phases) Joint Committee on Powder diffraction Data (JCPDS).
  35. Meija J., Coplen T.B., Berlund M. et al. // Pure Appl. Chem. V. 88. P. 265. https://doi.org/10.1515/pac-2015-0305
  36. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  37. Johnson D.A., Westrum E.F. Ir. // Themochim. Acta. 1994. V. 245. P. 173.
  38. Tari A.The Specific Heat of Matter at Low Temperatures. Imperial College Press, 2003. P. 211. https://doi.org/10.1142/9781860949395_0006
  39. Schlichting K.W., Padture N.P., Klemens P.G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/a:1017970924312
  40. Chen H., Gao Y., Liu Y. et al. // J. Alloys Compd. 2009. V. 480. P. 843. https://doi.org/10.1016/j.jallcom.2009.02.081
  41. Guo X., Yu Y., Ma W. et al. // Ceram. Int. 2022. V. 48. P. 36084. https://doi.org/10.1016/j.ceramint.2022.08.122

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (84KB)
3.

Baixar (1MB)
4.

Baixar (72KB)
5.

Baixar (183KB)
6.

Baixar (156KB)

Declaração de direitos autorais © П.Г. Гагарин, А.В. Гуськов, В.Н. Гуськов, А.В. Хорошилов, К.С. Гавричев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies