Vanishing Superstructure: Crystal and Local Structures of Ni3 – xMTe2 (M = Sb, Sn)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Series of compounds Ni3 – xMTe2 (M = Sb, Sn; x = 0–1) were obtained by high-temperature sealed-tube synthesis and characterized by X-ray powder diffraction and 121Sb and 119Sn Mössbauer spectroscopy. For Ni3–xSnTe2, it was shown that, as х varies from 1 to 0, nickel is distributed over three possible sites, two of which give a total occupancy of 1 and have ordered vacancies. Meanwhile, for Ni3–xSbTe2 and х other than ~0.9–1.0, the vacancy ordering disappears. The temperature dependence of the presence or absence of vacancy ordering was established for Ni2SbTe2; the ordering disappears on heating above 600°C and appears again on cooling.

Sobre autores

E. Stroganova

Faculty of Chemistry, Moscow State University

Email: alexei@inorg.chem.msu.ru
119991, Moscow, Russia

S. Kazakov

Faculty of Chemistry, Moscow State University

Email: alexei@inorg.chem.msu.ru
119991, Moscow, Russia

P. Fabrichnii

Faculty of Chemistry, Moscow State University

Email: alexei@inorg.chem.msu.ru
119991, Moscow, Russia

M. Afanasov

Faculty of Chemistry, Moscow State University

Email: alexei@inorg.chem.msu.ru
119991, Moscow, Russia

A. Kuznetsov

Faculty of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: alexei@inorg.chem.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Reynolds T.K., Bales J.G., DiSalvo F.J. // Chem. Mater. 2002. V. 14. P. 4746. https://doi.org/10.1021/cm020585r
  2. Kuznetsov A.N., Serov A.A. // Eur. J. Inorg. Chem. 2016. V. 3. P. 373. https://doi.org/10.1002/ejic.201501197
  3. Исаева А.А., Баранов А.И., Доэрт Т. и др. // Изв. АН. Сер. химическая. 2007. Т. 56. № 9. С. 1632.
  4. Isaeva A.A., Baranov A.I., Kloo L. et al. // Solid State Sci. 2009. V. 11. P. 1071. https://doi.org/10.1016/j.solidstatesciences.2009.03.005
  5. Baranov A.I., Isaeva A.A., Kloo L. et al. // Inorg. Chem. 2003. V. 42. P. 6667. https://doi.org/10.1002/chin.200352007
  6. Baranov A.I., Isaeva A.A., Kloo L. et al. // J. Solid State Chem. 2004. V. 177. P. 3616. https://doi.org/10.1016/j.jssc.2004.05.061
  7. Isaeva A.A., Baranov A.I., Doert Th. et al. // J. Solid State Chem. 2007. V. 180. P. 221. https://doi.org/10.1016/j.jssc.2006.09.003
  8. Stroganova E.A., Kazakov S.M., Khrustalev V.N. et al. // J. Solid State Chem. 2022. V. 306. P. 122815. https://doi.org/10.1016/j.jssc.2021.122815
  9. Stroganova E.A., Kazakov S.M., Efimov N.N. et al. // Dalton Trans. 2020. V. 49. P. 15081. https://doi.org/10.1039/D0DT03082A
  10. Kuznetsov A.N., Stroganova E.A., Zakharova E.Yu. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1625. https://doi.org/10.1134/S0036023619130059
  11. Kuznetsov A.N., Stroganova E.A., Serov A.A. et al. // J. Alloys Compd. 2017. V. 696. P. 413. https://doi.org/10.1016/j.jallcom.2016.11.292
  12. Литвиненко О.Н., Кузнецов А.Н., Оленев А.В. и др. // Изв. АН. Сер. химическая. 2007. Т. 56. № 10. С. 1879.
  13. Isaeva A.A., Makarevich O.N., Kuznetsov A.N. et al. // Eur. J. Inorg. Chem. 2010. P. 1395. https://doi.org/10.1002/ejic.200901027
  14. Larsson A.-K., Noren L., Withers R.L. et al. // J. Solid State Chem. 2007. V. 180. P. 2723. https://doi.org/10.1016/j.jssc.2007.07.020
  15. Noren L., Withers R.L., Brink F.J. // J. Alloys Compd. 2003. V. 353. P. 133. https://doi.org/10.1016/S0925-8388(02)01309-9
  16. Deiseroth H.-J., Aleksandrov K., Reiner C. et al. // Eur. J. Inorg. Chem. 2006. V. 8. P. 1561. https://doi.org/10.1002/ejic.200501020
  17. Deiseroth H.-J., Sprirovski F., Reiner C. et al. // Z. Kristallogr. New Crystal Structures. 2007. V. 222. P. 169. https://doi.org/10.1524/ncrs.2007.0070
  18. Dankwort T., Duppel V., Deiseroth H.-J. et al. // Semicond. Sci. Technol. 2016. V. 31. P. 7. https://doi.org/10.1088/0268-1242/31/9/094001
  19. Reynolds T.K., Kelley R.F., DiSalvo F.J. // J. Alloys Compd. 2004. V. 366. P. 136. https://doi.org/10.1016/j.jallcom.2003.07.008
  20. Бузанов Г.А., Строганова Е.А., Быков А.Ю. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 569.
  21. Kuznetsov A.N., Stroganova E.A., Zakharova E.Yu. et al. // J. Solid State Chem. 2017. V. 250. P. 90. https://doi.org/10.1016/j.jssc.2017.03.020
  22. Laufek F., Drábek M., Skála R. et al. // Can. Mineral. 2007. V. 45. P. 1213. https://doi.org/10.2113/gscanmin.45.5.1213
  23. Bruker AXS Topas V4.2: General profile and structure analysis software for powder diffraction data. Karlsruhe, 2009.
  24. Николаев В.И., Русаков В.С. Мессбауэровские исследования ферритов. М.: Изд-во МГУ, 1985. 224 с.
  25. Русаков В.С. Мессбауэровская спектроскопия локально неоднородных систем. Алматы, 2000. 431 с.
  26. Русаков В.С. // Изв. РАН. Сер. физическая. 1999. Т. 63. № 7. С. 1389.
  27. Rusakov V.S., Kadyrzhanov K.K. // Hyperfine Interact. 2005. V. 164. P. 87. https://doi.org/10.1007/s10751-006-9236-2
  28. Захарова Е.Ю., Маханёва А.Ю., Казаков С.М. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1250.
  29. Федоров П.П., Попов А.А., Шубин Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1805.
  30. Lippens P.E. // Solid State Commun. 2000. V. 113. P. 399. https://doi.org/10.1016/S0038-1098(99)00501-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (261KB)
4.

Baixar (1MB)
5.

Baixar (147KB)
6.

Baixar (275KB)
7.

Baixar (136KB)
8.

Baixar (900KB)

Declaração de direitos autorais © Е.А. Строганова, С.М. Казаков, П.Б. Фабричный, М.И. Афанасов, А.Н. Кузнецов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies