Boron Difluoride β-Diketonates: Structure and Phosphorescence

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Phosphorescence data on boron difluoride β-diketonates of various structure have been systematized. Nonplanar boron difluoride molecules are characterized by the inversion of the S1 and T2 levels, which promotes efficient population of triplet levels and intense phosphorescence or delayed fluorescence of crystals. Planar molecules are characterized by a classical sequence of singlet and triplet levels and a coplanar arrangement of antiparallel molecules, which contributes to excimer delayed fluorescence.

Sobre autores

A. Mirochnik

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Email: gev@ich.dvo.ru
690022, Vladivostok, Russia

E. Fedorenko

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Email: gev@ich.dvo.ru
690022, Vladivostok, Russia

A. Gerasimenko

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: gev@ich.dvo.ru
690022, Vladivostok, Russia

Bibliografia

  1. Gan N., Shi H., An Z. et al. // Adv. Funct. Mater. 2018. V. 28. № 51. P. 1802657 https://doi.org/10.1002/adfm.201802657
  2. Zhang T., Ma X., Wu H. // Angew. Chem. Int. Ed. Engl. 2020. V. 28. P. 11206. https://doi.org/10.1002/anie.201915433
  3. Wang X., Dong M., Li Z. et al. // Dyes Pigm. 2022. V. 204. P. 110400. https://doi.org/10.1016/j.dyepig.2022.110400
  4. Wu Z., Nitsch J., Marder T.B. // Adv. Opt. Mater. 2021. V. 9. P. 2100411. https://doi.org/10.1002/adom.202100411
  5. Chikineva T.Y., Koshelev D.S., Medved’ko A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 170. https://doi.org/10.1134/S0036023621020054
  6. Ma H., Lv A., Fu L. et al. // Ann. Phys. 2019. V. 531. P. 1800482. https://doi.org/10.1002/andp.201800482
  7. Chow Y.L., Johansson C.I., Zhang Y. et al. // J. Phys. Org. Chem. 1996. V. 9. P. 7.
  8. Xu P., Chen H., Duan H. et al. // Russ. J. Gen. Chem. 2022. V. 92. P. 1814. https://doi.org/10.1134/S1070363222090225
  9. Kozenkov V.M., Spakhov A.A., Belyaev V.V. et al. // Liq. Cryst. 2016. V. 16. № 4. P. 9. https://doi.org/10.18083/LCAppl.2016.4.9
  10. Zhinzhilo V.A., Uflyand I.E. // Russ. J. Gen. Chem. 2022. V. 92. P. 1937. https://doi.org/10.1134/S1070363222100097
  11. Zhang G., Chen J., Payn S.J. et al. // J. Am. Chem. Soc. 2007. V. 129. № 29. P. 8942. https://doi.org/10.1021/ja0720255
  12. Li J., Wang X., Zhao X. et al. // Chin. J. Chem. 2022. V. 40. № 21. P. 2507. https://doi.org/10.1002/cjoc.202200354
  13. Sakai A., Tanaka M., Ohta E. et al. // Tetrahedron Lett. 2012. V. 53. P. 4138. https://doi.org/10.1016/j.tetlet.2012.05.122
  14. Poggi B., Lopez E., Mйtivier R. et al. // Macromol. Rapid Commun. 2022. V. 43. P. 2200134. https://doi.org/10.1002/marc.202200134
  15. Domercq B., Grasso C., Maldnado J.-L. et al. // J. Phys. Chem. B. 2004. V. 108. P. 8647. https://doi.org/10.1021/jp036779r
  16. Карасев В.Е., Коротких О.А. // Журн. неорган. химии. 1986. Т. 31. С. 869.
  17. Mirochnik A.G., Puzyrkov Z.N., Fedorenko E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1425. [Мирочник А.Г., Пузырьков З.Н., Федоренко Е.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1292.]https://doi.org/10.1134/S003602362209008X
  18. Fedorenko E.V., Mirochnik A.G., Gerasimenko A.V. et al. // J. Photochem. Photobiol. Chem. 2021. V. 412. P. 113220. https://doi.org/10.1016/j.jphotochem.2021.113220
  19. US Pat. 004846; 16.20.2003 Publ.
  20. Буквецкий Б.В., Федоренко Е.В., Мирочник А.Г. и др. // Журн. структур. химии. 2006. Т. 47. № 1. С. 60.
  21. Fedorenko E.V., Mirochnik A.G., Gerasimenko A.V. et al. // Dyes Pigm. 2018. V. 159. P. 557. https://doi.org/10.1016/j.dyepig.2018.07.022
  22. Fedorenko E.V., Bukvetskii B.V., Mirochnik A.G. et al. // J. Lumin. 2010. V. 130. № 5. P. 756.https://doi.org/10.1016/j.jlumin.2009.11.027
  23. Bruker. APEX2. Bruker AXS Inc., Madison, 2012.
  24. Sheldrick G.M. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, 1998.
  25. Thalladi V.R., Weiss H.-C., Bla¨ser D. et al. // J. Am. Chem. Soc. 1998. V. 12. № 34. P. 8702. https://doi.org/10.1021/ja981198e
  26. Brammer A., Bruton E., Sherwood P. // Cryst. Growth Des. 2001. V. 1. P. 277. https://doi.org/10.1021/cg015522k
  27. Rohde D., Yan C.-J., Wan L.-J. // Langmuir. 2006. V. 22. P. 4750. https.//doi.orghttps://doi.org/10.1021/la053138+
  28. Федоренко Е.В., Буквецкий Б.В., Мирочник А.Г. и др. // Изв. АН. Сер. хим. 2009. № 11. С. 2174.
  29. Tikhonov S.A., Fedorenko E.V., Mirochnik A.G. et al. // Spectrochim. Acta A. 2019. V. 214. P. 67. https://doi.org/10.1016/j.saa.2019.02.002
  30. Hanson A.W., Macaulay E.W. // Acta Crystallogr. 1972. V. 28. P. 1961.
  31. Mirochnik A.G., Bukvetskii B.V., Gukhman E.V. et al. // J. Fluor. 2003. V. 13. № 2. P. 157. https://doi.org/10.1023/A:1022939209971
  32. Dromzee Y., Kossanyi J., Wintgens V. // Z. Kristallogr. 1997. V. 212. P. 372. https://doi.org/10.1524/zkri.1997.212.5.372
  33. Буквецкий Б.В., Федоренко Е.В., Мирочник А.Г. // Журн. структур. химии. 2011. Т. 52. № 1. С. 223.
  34. Буквецкий Б.В., Федоренко Е.В., Мирочник А.Г. и др. // Журн. структур. химии. 2010. Т. 51. № 3. С. 563.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (7KB)
3.

Baixar (6KB)
4.

Baixar (9KB)
5.

Baixar (10KB)
6.

Baixar (11KB)
7.

Baixar (6KB)
8.

Baixar (238KB)
9.

Baixar (203KB)
10.

Baixar (74KB)
11.

Baixar (50KB)
12.

Baixar (142KB)
13.

Baixar (78KB)

Declaração de direitos autorais © А.Г. Мирочник, Е.В. Федоренко, А.В. Герасименко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies