Thermal Stability of Nanocrystalline Zinc Sulfide ZnS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nanocrystalline zinc sulfide (ZnS) powders are prepared via hydrothermal deposition from aqueous solutions of zinc nitrate and sodium sulfide in the presence of sodium citrate or Trilon B. The average particle sizes of the product ZnS nanopowders ranging from 2 to 9 nm are tuned via varying the batch concentrations of the reagents. Air-annealing of as-prepared ZnS nanopowders at temperatures of 280 to 530°C oxidizes cubic zinc sulfide to hexagonal zinc oxide. The oxidation of the finest-grained zinc sulfide nanopowders having a particle size of 2 nm starts at 280–330°C, while the coarsest-grained nanopowder having a particle size of 9 nm starts to oxidize at 530°C. In the coarsest-grained ZnS powder, the particle size increases as little as from 9 to 12 nm when temperature rises to 530°C, while the finest-grained nanopowders have their particle sizes increase from 2 to 9 nm in response to the same rise in temperature.

Sobre autores

S. Sadovnikov

Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences

Email: sadovnikov@ihim.uran.ru
620990, Yekaterinburg, Russia

S. Sergeeva

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sadovnikov@ihim.uran.ru
620016, Yekaterinburg, Russia

Bibliografia

  1. Kaur N., Kaur S., Singh J. et al. // J. Bioelectron. Nanotechnol. 2016. V. 1. № 1. P. 5. https://doi.org/10.13188/2475-224X.1000006
  2. Cardona M., Harbeke G. // Phys. Rev. 1965. V. 137. № 5A. P. A1467. https://doi.org/10.1103/PhysReV.137.A1467
  3. Sadovnikov S.I., Rempel A.A., Gusev A.I. // Russ. Chem. Rev. 2018. V. 87. № 4. P. 303. https://doi.org/10.1070/RCR4803
  4. Fang X., Zhai T., Gautam U.K. et al. // Prog. Mater. Sci. 2011. V. 56. № 2. P. 175. https://doi.org/10.1016/j.pmatsci.2010.10.001
  5. Wang X., Huang H., Liang B. et al. // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 1. P. 57. https://doi.org/10.1080/10408436.2012.736887
  6. Kryshtab T., Khomchenko V.S., Andraca-Adame J.A. et al. // J. Lumin. 2009. V. 129. № 12. P. 1677. https://doi.org/j.jlumin.2009.04.069
  7. Ma X., Song J., Yu Z. // Thin Solid Films. 2011. V. 519. № 15. P. 5043. https://doi.org/10.1016/j.tsf.2011.01.125
  8. Ummartyotin S., Infahsaeng Y. // Renewable Sustainable Energy Rev. 2016. V. 55. P. 17. https://doi.org/10.1016/j.rser.2015.10.120
  9. Koroleva M.Yu., Gulyaeva E.V., Yurtov E.V. // Russ. J. Inorg. Chem. 2012. V. 57. № 3. P. 320. https://doi.org/10.1134/S0036023612030151
  10. Kuznetsova Yu.V., Popov I.D., Rempel A.A. // AIP Conf. Proc. 2020. V. 2313. P. 030021. https://doi.org/10.1063/5.0032224
  11. Sadovnikov S.I., Ishchenko A.V., Weinstein I.A. // J. Alloys Compd. 2020. V. 851. P. 154846. https://doi.org/10.1016/j.jallcom.2020.154846
  12. Shanmugam N., Shanmugam C., Kannadasan N. et al. // J. Nanomater. 2013. P. 351798. https://doi.org/10.1155/2013/351798
  13. Mohamed M.B., Abdel-Kader M.H. // Mater. Chem. Phys. 2020. V. 241. P. 122285. https://doi.org/10.1016/j.matchemphys.2019.122285
  14. Queiroz C.A.R., Carvalho R.J., Moura F.J. // Brazil. J. Chem. Eng. 2005. V. 22. № 1. P. 127. https://doi.org/10.1590/S0104-66322005000100012
  15. Osuntokun J., Ajibade P.A. // J. Nanomater. 2016. V. 2016. P. 3296071. https://doi.org/10.1155/2016/3296071
  16. Osuntokun J., Ajibade P.A. // Physica B: Cond. Matter. 2016. V. 496. P. 106. https://doi.org/10.1016/j.physb.2016.05.024
  17. Sadovnikov S.I., Gerasimov E.Yu. // Nanoscale Advances. 2019. V. 1. № 4. P. 1581. https://doi.org/10.1039/c8na00347e
  18. Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115
  19. X’Pert HighScore Plus. Version 2.2e (2.2.5). © 2009 PANalytical B. V. Almedo, the Netherlands.
  20. Match! Version 1.10b. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
  21. Van Aswegen J.T.S., Verleger H. // Die Naturwissenschafien. 1960. V. 47. № 6. P. 131. https://doi.org/10.1007/BF00628510
  22. JCPDS card № 005-0566.
  23. Xu Y.N., Ching W.Y. // Phys. Rev. B. 1993. V. 48. № 7. P. 4335. https://doi.org/10.1103/PhysRevB.48.4335
  24. Ballentyne D.W.G., Roy B. // Physica. 1961. V. 27. № 3. P. 337. https://doi.org/10.1016/0031-8914(61)90106-9
  25. Sadovnikov S.I., Kozhevnikova N.S., Rempel A.A. // Inorg. Mater. 2011. V. 47. № 8. P. 837. https://doi.org/10.1134/S0020168511080176
  26. Sadovnikov S.I., Kozhevnikova N.S., Rempel A.A. // Russ. J. Inorg. Chem. 2011. V. 56. № 12. P. 1864. https://doi.org/10.1134/S0036023611120448
  27. Kim S., Merkle R., Maier J. // Solid State Ionics. 2003. V. 161. № 1-2. P. 113. https://doi.org/10.1016/S0167-2738(03)00262-5
  28. Szałaj U., Świderska Ś.A., Chodara A. et al. // Nanomaterials. 2019. V. 9. № 7. P. 1005.
  29. Drygas M., Janik J.F., Czepirski L. // Curr. Nanosci. 2013. V. 9. № 3. P. 318. https://doi.org/10.2174/1573413711309030004
  30. Sadovnikov S.I., Gusev A.I. // J. Alloys Compd. 2014. V. 586. P. 105. https://doi.org/10.1016/j.jallcom.2013.10.008
  31. Bhattacharjee M., Bandyopadhyay D. // Sens. Actuators, A.: Phys. 2019. V. 285. P. 241. https://doi.org/10.1016/j.sna.2018.11.034
  32. Sadovnikov S.I., Gusev A.I. // J. Therm. Anal. Calorim. 2018. V. 131. № 2. P. 1155. https://doi.org/10.1007/s10973-017-6691-8
  33. Орлов А.К. // Записки Горного института. 2006. Т. 169. С. 163.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (169KB)
4.

Baixar (334KB)
5.

Baixar (268KB)
6.

Baixar (60KB)

Declaração de direitos autorais © С.И. Садовников, С.В. Сергеева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies