Effects of the Preparation Method on the Dielectric Properties of Ni–Al Layered Double Hydroxides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Ni–Al layered double hydroxides (LDHs) are of interest as functional materials. The effects of preparation methods on the dielectric properties of Ni–Al layered double hydroxides were studied on samples prepared from solution (by coprecipitation and a hydrothermal process) and by plasma technology. The prepared layered structures were characterized by advanced analytical methods. The high ζ potentials of the particles prepared in suspensions evidence their high aggregation stability. X-ray powder diffraction and IR spectroscopy were used to determine the phase composition of samples and to identify the interlayer anion. The plasma between Al and Ni electrodes in distilled bulk water gives rise to the formation of Ni–Al LDHs with hydroxide ion as the interlayer anion. Thermal properties of the structures prepared were studied by thermal analysis. The results of dielectric measurements are presented.

Sobre autores

A. Agafonov

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

V. Shibaeva

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. Kraev

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

N. Sirotkin

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

V. Titov

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. Khlyustova

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kav@isc-ras.ru
153045, Ivanovo, Russia

Bibliografia

  1. Tang S., Yao Y., Chen T. et al. // Anal. Chim. Acta. 2020. V. 1103. P. 32.
  2. Fan G., Li F., Evans D.G. et al. // Chem. Soc. Rev. 2014. V. 43. P. 7040.
  3. Baig N., Sajid M. // Trends Environ. Anal. Chem. 2017. V. 16. P. 1.
  4. Forano C., Bruna F., Mousty C. et al. // Chem. Record. 2018. V. 18. P. 1150.
  5. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172.
  6. Lahkale R., Elhatimi W., Sadik R. et al. // Appl. Clay Sci. 2018. V. 158. P. 55.
  7. Bouragba F.Z., Elhatimi W., Lahkale R. et al. // Bull. Mater. Sci. 2020. V. 43 P. 1.
  8. Khalaf M.M., Ibrahimov H.G., Ismailov E.H. // Chem. J. 2012. V. 2. P. 118.
  9. Guo T., Yao M.S., Lin Y.H. et al. // CrystEngComm. 2015. V. 17. P. 3551.
  10. Evans D.G., Slade R.C. Structural aspects of layered double hydroxides. Berlin: Springer, 2006.
  11. Khussnutdinov V.R., Isupov V.P. // Russ. J. Appl. Chem. 2020. V. 93. № 5. P. 639. [Хуснутдинов В.Р., Исупов В.П. // Журн. прикл. химии. 2020. Т. 93. № 5. С. 627.]
  12. Hur T.B., Phuoc T.X., Chyu M.K. // Opt. Lasers Eng. 2009. V. 47. № 6. P. 695.
  13. Karpukhin V.T., Malikov M.M., Borodina T.I. et al. // High Temp. 2013. V. 51. P. 277. [Карпухин В.Т., Маликов М.М., Бородина Т.И. и др. // Теплофизика высоких температур. 2013. Т. 51. № 2. С. 311.]
  14. Tao X., Yang C., Huang L. et al. // Appl. Surf. Sci. 2020. V. 507. P. 145053.
  15. Chen H., Zhao Q., Gao L. et al. // ACS Sust. Chem. Eng. 2019. V. 7. № 4. P. 4247.
  16. Levashov E.A., Mukasyan A.S., Rogachev A.S. et al. // Int. Mater. Rev. 2017. V. 62. P. 203.
  17. Prinetto F., Ghiotti G., Graffin P. et al. // Microporous Mesoporous Mater. 2000. V. 39. P. 229.
  18. Agafonov A.V., Sirotkin N.A., Titov V.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 253. [Агафонов А.В., Сироткин Н.А., Титов В.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 271.]
  19. Yun S.K., Pinnavaia T.J. // Chem. Mater. 1995. V. 7. P. 348.
  20. Wang S.L., Liu C.H., Wang M.K. et al. // Appl. Clay Sci. 2009. V. 43. P. 79.
  21. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part A: Theory and Applications in Inorganic Chemistry. New Jersey: Wiley, 2009.
  22. Cavani F., Trifiro F., Vaccari A. // Catal. Today. 1991. V. 11. P. 173.
  23. Koritnig S., Süsse P. // Tschermaks Min. Petr. Mitt. 1975. V. 22. P. 79.
  24. Roobottom H.K., Jenkins H.D.B., Passmore J. et al. // J. Chem. Educ. 1999. V. 76. P. 1570.
  25. Białas A., Mazur M., Natkański P. et al. // Appl. Surf. Sci. 2016. V. 362. P. 297.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (152KB)
3.

Baixar (132KB)
4.

Baixar (113KB)
5.

Baixar (1MB)
6.

Baixar (177KB)

Declaração de direitos autorais © А.В. Агафонов, В.Д. Шибаева, А.С. Краев, Н.А. Сироткин, В.А. Титов, А.В. Хлюстова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies