Features of the synthesis of magnesium praseodymium hexaaluminate PrMgAl11O19 with a magnetoplumbite structure

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

RE magnesium hexaaluminates with magnetoplumbite structure are considered as potential candidates for thermal barrier coatings. However, the synthesis of single-phase samples is associated with certain difficulties. In this work, the features of PrMgAl11O19 preparation by reverse precipitation and citrate sol-gel synthesis are compared. Based on the results of thermal analysis of precursors, stepwise annealing of the samples was carried out, followed by X-ray phase analysis of the product. It is shown that the optimal condition for producing single-phase hexaaluminate PrMgAl11O19 is long-term annealing of tableted precursors obtained by the sol-gel method at a temperature of 1600°C. Thermodynamic assessment of possible reactions of praseodymium magnesium hexaaluminate formation from oxides confirmed the decomposition of PrMgAl11O19 at temperatures above 1700°C.

Толық мәтін

Рұқсат жабық

Авторлар туралы

М. Ryumin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Хат алмасуға жауапты Автор.
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

O. Kondrat’eva

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

K. Gavrcihev

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. № 5566. P. 280. https://doi.org/10.1126/science.1068609
  2. Xueqiang C.A.O. // J. Mater. Sci. Technol. 2007. V. 23. № 1. P. 15. https://www.jmst.org/EN/Y2007/V23/I01/15
  3. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
  4. Gleeson B. // J. Propulsion Power. 2006 V. 22. № 23. P. 75. https://doi.org/10.2514/1.20734
  5. Seraffon M., Simms N.J., Sumner J. et al. // Surf. Coat. Technol. 2011. V. 206. № 7. P. 1529. https://doi.org/10.1016/j.surfcoat.2011.06.023
  6. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. № 8. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  7. Drexler J.M., Gledhill A.D., Shinoda K. et al. // Adv. Mater. 2011. V. 23. № 21. P. 2419. https://doi.org/10.1002/adma.201004783
  8. Ma W., Mack D.E., Vaßen R. et al. // J. Am. Ceram. Soc. 2008. V. 91. № 8. P. 2630. https://doi.org/10.1111/j.1551-2916.2008.02472.x
  9. Bansal N.P., Zhu D.M. // Surf. Coat. Technol. 2008. V. 202. № 12. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  10. Choi S.R., Bansal N.P., Zhu D.M. // Ceram. Eng. Sci. Proc. 2005. V. 26. P. 11. https://doi.org/10.1002/9780470291238.ch2
  11. Haoran L., Chang-An W., Chenguang Zh. et al. // J. Eur. Ceram. Soc. 2015. V. 35. № 4. P. 1297. https://doi.org/10.1016/j.jeurceramsoc.2014.10.030
  12. Li X., Deng Z., Zhao H. et al. // Surf. Coat. Technol. 2022. V. 440. P. 128490. https://doi.org/10.1016/j.surfcoat.2022.128490
  13. Wang Y.H., Ouyang J.H., Liu Z.G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  14. Chen X., Sun Y., Hu J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1424. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039
  15. Min X., Fang M., Huang Z. et al. // Mater. Lett. 2014. V. 125. P. 140. https://doi.org/10.1016/j.matlet.2014.03.171
  16. Min X., Fang M., Huang Z. et al. // J. Am. Ceram. Soc. 2015. V. 98. № 3. P. 788. https://doi.org/10.1111/jace.13346
  17. Tian M., Wang X.D., Zhang T. // Catal. Sci. Technol. 2016. V. 6. № 7. P. 1984. https://doi.org/10.1039/C5CY02077H
  18. Sun J., Wang J., Hui Y. et al. // Ceram. Int. 2020. V. 46. № 4. P. 4174. https://doi.org/10.1016/j.ceramint.2019.10.135
  19. Wang Y.H., Ouyang J.H., Liu Z.G. // Mater. Design. 2010. V. 31. № 7. P. 3353. https://doi.org/10.1016/j.matdes.2010.01.058
  20. Wang C.A., Lu H., Huang Z. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 3. P. 1095. https://doi.org/10.1111/jace.15285
  21. Bhattacharya I.N., Das S.C., Mukherjee P.S. et al. // Scand. J. Metall. 2004. V. 33. № 4. P. 211. https://doi.org/10.1111/j.1600-0692.2004.00686.x
  22. Sokovnin S.Y., Il’ves V.G. // Nanotechnologies Russ. 2013. V. 8. № 3. P. 220. https://doi.org/10.1134/S1995078013020171
  23. Gagarin P.G., Guskov A.V., Guskov V.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1599. https://doi.org/10.31857/S0044457X23601062 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.]
  24. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. № 11. P. 6864. https://doi.org/10.1063/1.328680
  25. Ma Z., Zheng S., Chen Y. et al. // Phys. Rev. B. 2024. V. 109. № 16. P. 165143. https://doi.org/10.1103/physrevb.109.165143
  26. Cao Y., Bu H., Fu Z. et al. // Mater. Futures. 2024. V. 3. № 3. P. 035201. https://doi.org/10.1088/2752-5724/ad4a93
  27. Zhu R.X., Liu Z.G., Ouyang J.H. et al. // Ceram. Int. 2013. V. 39. № 8. P. 8841. https://doi.org/10.1016/j.ceramint.2013.04.073
  28. Robie R.A., Hemingway B.S., Fisher J.R. // US Geol. Surv. Bull. 1978. № 1452. P. 364. https://doi.org/10.1021/cm201964r
  29. Gruber J.B., Justice B.H., Westrum Jr E.F. et al. // J. Chem. Thermodyn. 2002. V. 34. № 4. P. 457. https://doi.org/10.1006/jcht.2001.0860
  30. Zhang Y., Navrotsky A. // J. Non-Cryst. Solids. 2004. V. 341. P. 141. https://doi.org/10.1016/j.jnoncrysol.2004.04.027.
  31. Tachibana M., Fritsch K., Gaulin B.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 2014. V. 89. № 17. P. 174106. https://doi.org/10.1103/PhysRevB.89.174106.
  32. Glasser L. // Chem. Thermodyn. Therm. Anal. 2022. V. 7. P. 100069. https://doi.org/10.1016/j.ctta.2022.100069
  33. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2024. Т. 69. № 10. P. 1532. https://10.1134/S0036023624602186 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 10. С. 1424. https://doi.org/10.31857/S0044457X24100081 ]

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Temperature dependences of heat flux and mass change of PrMgAl11O19 precursor obtained by the deposition method.

Жүктеу (39KB)
3. Fig. 2. Diffractograms of PrMgAl11O19 precursor obtained by deposition method and annealed at 600 (1), 1000 (2), 1300 (3), 1400 (4), 1500 (5), 1600 (6) and 1700°C (7). P is PrAlO3 (perovskite), S is MgAl2O4 (spinel), C is a-Al2O3 (corundum), O is Pr6O11, and γ is γ-Al2O3. Unlabeled peaks refer to the PrMgAl11O19 phase with magnetoplumbite structure.

Жүктеу (67KB)
4. Fig. 3. Results of thermal and thermogravimetric analysis of PrMgAl11O19 precursor obtained by sol-gel method.

Жүктеу (32KB)
5. Fig. 4. Diffractograms of PrMgAl11O19 precursor prepared by sol-gel method and annealed at 1000 (1), 1500 (2), 1600 (3) and 1700°C (4). P is PrAlO3 (perovskite) and S is MgAl2O4 (spinel). Unlabeled peaks refer to the PrMgAl11O19 phase with magnetoplumbite structure.

Жүктеу (44KB)
6. Fig. 5. Diffractogram of PrMgAl11O19.

Жүктеу (60KB)
7. Fig. 6. Microphotograph of magnesium praseodymium hexaaluminate prepared by sol-gel synthesis method and annealed at 1600°C.

Жүктеу (197KB)
8. Fig. 7. Temperature dependences of the Gibbs energy of the reactions of PrMgAl11O19 formation. 1-4 - numbers of reactions (see in the text).

Жүктеу (23KB)

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».