Особенности синтеза гексаалюмината празеодима-магния PrMgAl11O19 со структурой магнетоплюмбита

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гексаалюминаты РЗЭ-магния со структурой магнетоплюмбита рассматриваются в качестве потенциальных кандидатов на роль термобарьерных покрытий. Однако синтез однофазных образцов сопряжен с определенными трудностями. В настоящей работе сопоставлены особенности получения PrMgAl11O19 методами осаждения и цитратного золь-гель синтеза. По результатам термического анализа прекурсоров проведен постадийный отжиг образцов с последующим рентгенофазовым анализом продукта. Показано, что оптимальным условием получения однофазного гексаалюмината PrMgAl11O19 является длительный отжиг таблетированных прекурсоров, полученных золь-гель методом, при температуре 1600°C. Термодинамическая оценка возможных реакций образования гексаалюмината празеодима-магния из оксидов подтвердила разложение PrMgAl11O19 при температурах >1700°C.

Полный текст

Доступ закрыт

Об авторах

М. А. Рюмин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Г. Е. Никифорова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

П. Г. Гагарин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: gagarin@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

О. Н. Кондратьева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

К. С. Гавричев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: gagarin@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. № 5566. P. 280. https://doi.org/10.1126/science.1068609
  2. Xueqiang C.A.O. // J. Mater. Sci. Technol. 2007. V. 23. № 1. P. 15. https://www.jmst.org/EN/Y2007/V23/I01/15
  3. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
  4. Gleeson B. // J. Propulsion Power. 2006 V. 22. № 23. P. 75. https://doi.org/10.2514/1.20734
  5. Seraffon M., Simms N.J., Sumner J. et al. // Surf. Coat. Technol. 2011. V. 206. № 7. P. 1529. https://doi.org/10.1016/j.surfcoat.2011.06.023
  6. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. № 8. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  7. Drexler J.M., Gledhill A.D., Shinoda K. et al. // Adv. Mater. 2011. V. 23. № 21. P. 2419. https://doi.org/10.1002/adma.201004783
  8. Ma W., Mack D.E., Vaßen R. et al. // J. Am. Ceram. Soc. 2008. V. 91. № 8. P. 2630. https://doi.org/10.1111/j.1551-2916.2008.02472.x
  9. Bansal N.P., Zhu D.M. // Surf. Coat. Technol. 2008. V. 202. № 12. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  10. Choi S.R., Bansal N.P., Zhu D.M. // Ceram. Eng. Sci. Proc. 2005. V. 26. P. 11. https://doi.org/10.1002/9780470291238.ch2
  11. Haoran L., Chang-An W., Chenguang Zh. et al. // J. Eur. Ceram. Soc. 2015. V. 35. № 4. P. 1297. https://doi.org/10.1016/j.jeurceramsoc.2014.10.030
  12. Li X., Deng Z., Zhao H. et al. // Surf. Coat. Technol. 2022. V. 440. P. 128490. https://doi.org/10.1016/j.surfcoat.2022.128490
  13. Wang Y.H., Ouyang J.H., Liu Z.G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  14. Chen X., Sun Y., Hu J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1424. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039
  15. Min X., Fang M., Huang Z. et al. // Mater. Lett. 2014. V. 125. P. 140. https://doi.org/10.1016/j.matlet.2014.03.171
  16. Min X., Fang M., Huang Z. et al. // J. Am. Ceram. Soc. 2015. V. 98. № 3. P. 788. https://doi.org/10.1111/jace.13346
  17. Tian M., Wang X.D., Zhang T. // Catal. Sci. Technol. 2016. V. 6. № 7. P. 1984. https://doi.org/10.1039/C5CY02077H
  18. Sun J., Wang J., Hui Y. et al. // Ceram. Int. 2020. V. 46. № 4. P. 4174. https://doi.org/10.1016/j.ceramint.2019.10.135
  19. Wang Y.H., Ouyang J.H., Liu Z.G. // Mater. Design. 2010. V. 31. № 7. P. 3353. https://doi.org/10.1016/j.matdes.2010.01.058
  20. Wang C.A., Lu H., Huang Z. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 3. P. 1095. https://doi.org/10.1111/jace.15285
  21. Bhattacharya I.N., Das S.C., Mukherjee P.S. et al. // Scand. J. Metall. 2004. V. 33. № 4. P. 211. https://doi.org/10.1111/j.1600-0692.2004.00686.x
  22. Sokovnin S.Y., Il’ves V.G. // Nanotechnologies Russ. 2013. V. 8. № 3. P. 220. https://doi.org/10.1134/S1995078013020171
  23. Gagarin P.G., Guskov A.V., Guskov V.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1599. https://doi.org/10.31857/S0044457X23601062 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.]
  24. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. № 11. P. 6864. https://doi.org/10.1063/1.328680
  25. Ma Z., Zheng S., Chen Y. et al. // Phys. Rev. B. 2024. V. 109. № 16. P. 165143. https://doi.org/10.1103/physrevb.109.165143
  26. Cao Y., Bu H., Fu Z. et al. // Mater. Futures. 2024. V. 3. № 3. P. 035201. https://doi.org/10.1088/2752-5724/ad4a93
  27. Zhu R.X., Liu Z.G., Ouyang J.H. et al. // Ceram. Int. 2013. V. 39. № 8. P. 8841. https://doi.org/10.1016/j.ceramint.2013.04.073
  28. Robie R.A., Hemingway B.S., Fisher J.R. // US Geol. Surv. Bull. 1978. № 1452. P. 364. https://doi.org/10.1021/cm201964r
  29. Gruber J.B., Justice B.H., Westrum Jr E.F. et al. // J. Chem. Thermodyn. 2002. V. 34. № 4. P. 457. https://doi.org/10.1006/jcht.2001.0860
  30. Zhang Y., Navrotsky A. // J. Non-Cryst. Solids. 2004. V. 341. P. 141. https://doi.org/10.1016/j.jnoncrysol.2004.04.027.
  31. Tachibana M., Fritsch K., Gaulin B.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 2014. V. 89. № 17. P. 174106. https://doi.org/10.1103/PhysRevB.89.174106.
  32. Glasser L. // Chem. Thermodyn. Therm. Anal. 2022. V. 7. P. 100069. https://doi.org/10.1016/j.ctta.2022.100069
  33. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2024. Т. 69. № 10. P. 1532. https://10.1134/S0036023624602186 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 10. С. 1424. https://doi.org/10.31857/S0044457X24100081 ]

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Температурные зависимости теплового потока и изменения массы прекурсора PrMgAl11O19, полученного методом осаждения.

Скачать (39KB)
3. Рис. 2. Дифрактограммы прекурсора PrMgAl11O19, полученного методом осаждения и отожженного при 600 (1), 1000 (2), 1300 (3), 1400 (4), 1500 (5), 1600 (6) и 1700°C (7). P – PrAlO3 (перовскит), S – MgAl2O4 (шпинель), С – a-Al2O3 (корунд), O – Pr6O11, γ – γ-Al2O3. Необозначенные пики относятся к фазе PrMgAl11O19 со структурой магнетоплюмбита.

Скачать (67KB)
4. Рис. 3. Результаты термического и термогравиметрического анализа прекурсора PrMgAl11O19, полученного золь-гель методом.

Скачать (32KB)
5. Рис. 4. Дифрактограммы прекурсора PrMgAl11O19, полученного золь-гель методом и отожженного при 1000 (1), 1500 (2), 1600 (3) и 1700°C (4). P – PrAlO3 (перовскит), S – MgAl2O4 (шпинель). Необозначенные пики относятся к фазе PrMgAl11O19 со структурой магнетоплюмбита.

Скачать (44KB)
6. Рис. 5. Дифрактограмма PrMgAl11O19.

Скачать (60KB)
7. Рис. 6. Микрофотография гексаалюмината празеодима магния, полученного золь-гель методом синтеза и отожженного при температуре 1600°C.

Скачать (197KB)
8. Рис. 7. Температурные зависимости энергии Гиббса реакций образования PrMgAl11O19. 1–4 – номера реакций (см. в тексте).

Скачать (23KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».