Катехолатные комплексы меди(II) с полипиридильными лигандами

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Синтезированы катехолатные комплексы меди(II) на основе 3,6-ди-трет-бутил-о-бензохинона с N-донорными лигандами фенантролинового ряда: (3,6-Cat)Cu(Phen) (I), (3,6-Cat)Cu(DPQ) (II) и (3,6-Cat)Cu(DPPZ) (III), где 3,6-Cat – дианион 3,6-ди-трет-бутил-о-бензохинона, Phen – фенантролин, DPQ – дипиридо[3,2-d:2',3'-f]хиноксалин, DPPZ – дипиридо[3,2-a:2',3'-c]феназин. Синтезированные гетеролептические комплексы меди(II) демонстрируют внутримолекулярный перенос заряда лиганд–лиганд, что обусловливает их интенсивную фиолетовую окраску. Электронное строение синтезированных хромофоров исследовано методами электронной спектроскопии, циклической вольтамперометрии и квантово-химических расчетов. Молекулярное и кристаллическое строение синтезированных соединений установлено методом РСА (CIF files CCDC 2250975 (I · THF), 2 250 976 ([(II · THF)(II)] · 3THF), 2250977 (II)).

Авторлар туралы

О. Трофимова

Институт металлоорганической химии им. Г.А. Разуваева РАН

Хат алмасуға жауапты Автор.
Email: olesya@iomc.ras.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

К. Пашанова

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

И. Ершова

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

М. Арсеньев

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

И. Якушев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: olesya@iomc.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31,

П. Дороватовский

Национальный исследовательский центр “Курчатовский институт”

Email: olesya@iomc.ras.ru
Россия, 123182, Москва, пл. Академика Курчатова, 1

Р. Айсин

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: olesya@iomc.ras.ru
Россия, 119334, Москва, ул. Вавилова, 28

А. Пискунов

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

Әдебиет тізімі

  1. Sobottka S., Nößler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. P. 1314. https://doi.org/10.1002/chem.201903700
  2. Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
  3. Shultz D.A., Stephenson R., Kirk M.L. // Dalton Trans. 2023. V. 52. P. 1970. https://doi.org/10.1039/D2DT03385B
  4. Yang J., Kersi D.K., Giles L.J. et al. // Inorg. Chem. 2014. V. 53. P. 4791. https://doi.org/10.1021/ic500217y
  5. Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53. P. 8825. https://doi.org/10.1021/ic5017214
  6. Shavaleev N.M., Davies E.S., Adams H. et al. // Inorg. Chem. 2008. V. 47. P. 1532. https://doi.org/10.1021/ic701821d
  7. Benedix R., Hennig H., Kunkely H. et al. // Chem. Phys. Lett. 1990. V. 175. P. 483. https://doi.org/10.1016/0009-2614(90)85568-W
  8. Cameron L.A., Ziller J.W., Heyduk A.F. // Chem. Sci. 2016. V. 7. P. 1807. https://doi.org/10.1039/C5SC02703A
  9. Ghosh P., Begum A., Herebian D. et al. // Angew. Chem. Int. Ed. 2003. V. 42. P. 563. https://doi.org/10.1002/anie.200390162
  10. Best J., Sazanovich I.V., Adams H. et al. // Inorg. Chem. 2010. V. 49. P. 10041. https://doi.org/10.1021/ic101344t
  11. Scattergood P.A., Jesus P., Adams H. et al. // Dalton Trans. 2015. V. 44. P. 11705. https://doi.org/10.1039/C4DT03466J
  12. Yang J., Kersi D.K., Richers C.P. et al. // Inorg. Chem. 2018. V. 57. P. 13470. https://doi.org/10.1021/acs.inorgchem.8b02087
  13. Kirk M.L., Shultz D.A., Marri A.R. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21005. https://doi.org/10.1021/jacs.2c09680
  14. Kirk M.L., Shultz D.A., Hewitt P. et al. // Chem. Sci. 2021. V. 12. P. 13704. https://doi.org/10.1039/D1SC02965G
  15. Kirk M.L., Shultz D.A., Chen J. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 10519. https://doi.org/10.1021/jacs.1c04149
  16. Hagberg D.P., Yum J.-H., Lee H. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 6259. https://doi.org/10.1021/ja800066y
  17. García-Cañadas J., Meacham A.P., Peter L.M. et al. // Angew. Chem. Int. Ed. 2003. V. 42. P. 3011. https://doi.org/10.1002/anie.200351338
  18. Ward M.D. // J. Solid State Electrochem. 2005. V. 9. P. 778. https://doi.org/10.1007/s10008-005-0668-4
  19. Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
  20. Atallah H., Taliaferro C.M., Wells K.A. et al. // Dalton Trans. 2020. V. 49. P. 11565. https://doi.org/10.1039/D0DT01765E
  21. Ершова И.В., Малеева А.В., Айсин Р.Р. и др. // Изв. Академии наук. Сер. хим. 2023. Т. 72. С. 193.
  22. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83. https://doi.org/10.1016/j.mencom.2022.01.027
  23. Малеева А.В., Трофимова О.Ю., Якушев И.А. и др. // Коорд. химия. 2023. Т. 49 (в печати).
  24. Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. P. 4622. https://doi.org/10.3390/molecules26154622
  25. Pashanova K.I., Ershova I.V., Trofimova O.Y. et al. // Molecules. 2022. V. 27. P. 8175. https://doi.org/10.3390/molecules27238175
  26. Rall J., Wanner M., Albrecht M. et al. // Chem. Eur. J. 1999. V. 5. P. 2802. https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<2802::AID-CHEM2802>3.0.CO;2-5
  27. Abakumov G.A., Krashilina A.V., Cherkasov V.K. et al. // Russ. Chem. Bull. 2001. V. 50. P. 2193. https://doi.org/10.1023/A:1015022006445
  28. Kaizer J., Zsigmond Z., Ganszky I. et al. // Inorg. Chem. 2007. V. 46. P. 4660. https://doi.org/10.1021/ic062309a
  29. Ovcharenko V.I., Gorelik E.V., Fokin S.V. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 10512. https://doi.org/10.1021/ja072463b
  30. Fursova E.Yu., Ovcharenko V.I., Gorelik E.V. et al. // Russ. Chem. Bull. 2009. V. 58. P. 1139. https://doi.org/10.1007/s11172-009-0148-6
  31. Davidson R.A., Hao J., Rheingold A.L. et al. // Polyhedron. 2017. V. 133. P. 348. https://doi.org/10.1016/j.poly.2017.05.038
  32. Cherkasova A.V., Kozhanov K.A., Zolotukhin A.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 489. https://doi.org/10.1134/S1070328419070029
  33. Kuropatov V.A., Cherkasova A.V., Martyanov K.A. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. P. 3292. https://doi.org/10.1002/ejic.202100517
  34. Buchanan R.M., Wilson-Blumenberg C., Trapp C. et al. // Inorg. Chem. 1986. V. 25. P. 3070. https://doi.org/10.1021/ic00237a029
  35. Verma P., Weir J., Mirica L. et al. // Inorg. Chem. 2011. V. 50. P. 9816. https://doi.org/10.1021/ic200958g
  36. Lakk-Bogáth D., Csonka R., Lorencz N. et al. // Polyhedron. 2015. V. 102. P. 185. https://doi.org/10.1016/j.poly.2015.09.026
  37. van der Tol E.B., van Ramesdonk H.J., Verhoeven J.W. et al. // Chem. Eur. J. 1998. V. 4. P. 2315. https://doi.org/10.1002/(SICI)1521-3765(19981102)4: 11<2315::AID-CHEM2315>3.0.CO;2-E
  38. Abakumov G.A., Cherkasov V.K., Bubnov M.P. et al. // Russ. Chem. Bull. 1992. V. 41. P. 1813. https://doi.org/10.1007/BF00863815
  39. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
  40. Kabsch W. // Acta Crystallogr., Sect. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  41. Bruker. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. 2016.
  42. Sheldrick G.M. // Acta Crystallogr. 2015. V. A71. P. 3. https://doi.org/10.1107/S2053273314026370
  43. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
  44. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  45. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Revision D.01. Gaussian, Inc. Wallingford CT. 2013.
  46. Hathaway B.J., Billing D.E. // Coord. Chem. Rev. 1970. V. 5. P. 143. https://doi.org/10.1016/S0010-8545(00)80135-6
  47. Piskunov A.V., Maleeva A.V., Mescheryakova I.N. et al. // Eur. J. Inorg. Chem. 2012. P. 4318. https://doi.org/10.1002/ejic.201200535
  48. Chegerev M.G., Piskunov A.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2016. P. 3813. https://doi.org/10.1002/ejic.201600501
  49. Davidson R.A., Hao J., Rheingold A.L. et al. // Polyhedron. 2017. V. 136. P. 176. https://doi.org/10.1016/j.poly.2017.10.003
  50. Batsanov S.S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
  51. Zairov R.R., Yagodin A.V., Khrizanforov M. et al. // J. Nanopart. Res. 2019. V. 21. P. 12.
  52. Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 764 с.

© О.Ю. Трофимова, К.И. Пашанова, И.В. Ершова, М.В. Арсеньев, И.А. Якушев, П.В. Дороватовский, Р.Р. Айсин, А.В. Пискунов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>