Features of Copper(I) Complexation with Benzimidazole Derivatives in the Presence of the closo-Dodecaborate Anion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of copper(I) complexation with organic ligands as luminophores 1-(1-methylbenzimidazol-2-yl)-N-phenylmethanimine (L1), 1-ethyl-2-(4-methoxyphenyl)azobenzimidazole (L2), and 1-(1-benzylbenzimidazol-2-yl)-N-cyclohexylmethanimine (L3) in the presence of the closo-dodecaborate anion [B12H12]2– has been studied. It has been shown that in acetonitrile, a redox reaction proceeds to form copper(II) tris-chelate complexes [CuIIL3][B12H12]. Using diiodomethane as a solvent, we have succeeded in stabilizing copper in the +1 oxidation state; as a result, mixed-ligand binuclear complexes [CuI2L2(μ-I)2] containing no boron cluster anion have been isolated. The structures of complexes [CuII(L1)3][B12H12] and [CuI2(L3)2(μ‑I)2] have been determined by X-ray diffraction.

About the authors

S. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korolencko0110@yandex.ru
119991, Moscow, Russia

A. S. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korolencko0110@yandex.ru
119991, Moscow, Russia

O. N. Belousova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korolencko0110@yandex.ru
119991, Moscow, Russia

V. V. Avdeeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korolencko0110@yandex.ru
119991, Moscow, Russia

E. A. Malinina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korolencko0110@yandex.ru
119991, Moscow, Russia

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: korolencko0110@yandex.ru
119991, Moscow, Russia

References

  1. Kumaravel G., Raman N. // Mater. Sci. Eng. C. 2017. V. 70. P. 184. https://doi.org/10.1016/j.msec.2016.08.069
  2. Mahmood K., Hashmi W., Ismail H. et al. // Polyhedron. 2018. V. 157. P. 326. https://doi.org/10.1016/j.poly.2018.10.020
  3. Rajarajeswari C., Loganathan R., Palaniandavar M. et al. // Dalton Trans. 2013. V. 42. P. 8347. https://doi.org/10.1039/C3DT32992E
  4. Galal S., Hegab K., Hashem A., Youssef N. // Eur. J. Med. Chem. 2010. V. 45. P. 5685. https://doi.org/10.1016/j.ejmech.2010.09.023
  5. Gupta M., Mathur P., Butcher R. // Inorg. Chem. 2001. V. 40. P. 878. https://doi.org/10.1021/ic000313v
  6. Puchoňová M., Švorec J., Švorc Ľ. et al. // Inorg. Chim. Acta. 2017. V. 455. P. 298. https://doi.org/10.1016/j.ica.2016.10.034
  7. Lavrenova L.G., Kuz’menko T.A., Ivanova A.D. et al. // New J. Chem. 2017. V. 41. P. 4341. https://doi.org/10.1039/C7NJ00533D
  8. Иванова А.Д., Кузьменко Т.А., Смоленцев А.И. и др. // Журн. коорд. химии. 2021. Т. 47. С. 689.
  9. Xiao B., Hou H., Fan Y.J. // J. Organomet. Chem. 2007. V. 692. P. 2014. https://doi.org/10.1016/j.jorganchem.2007.01.010
  10. Chen W., Xi C., Wu Y. // J. Organomet. Chem. 2007. V. 692. P. 4381. https://doi.org/10.1016/j.jorganchem.2007.07.006
  11. Hao P., Zhang S., Sun W.-H. et al. // Organometallics. 2007. V. 26. P. 2439. https://doi.org/10.1021/om070049e
  12. Haneda S., Gan Z., Eda K., Hayashi M. // Organometallics. 2007. V. 26. P. 6551. https://doi.org/10.1021/om7008843
  13. Sun W.-H., Hao P., Znang S. et al. // Organometallics. 2007. V. 26. P. 2720. https://doi.org/10.1021/om0700819
  14. Korolenko S.E., Zhuravlev K.P., Tsaryk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156. https://doi.org/10.1016/j.jlumin.2021.118156
  15. Yang B.B., Zhao F., Xu S.X., He H.F. // Chin. J. Inorg. Chem. 2019. V. 35. P. 1020. https://doi.org/10.11862/CJIC.2019.129
  16. Wu T.-C., Zhao F.-Z., Hu Q.-L. et al. // Appl. Organomet. Chem. 2020. V. 34. P. e5691. https://doi.org/10.1002/aoc.5691
  17. Huang T.-H., Hu Q.-L., Zhao F.-Z. et al. // J. Lumin. 2020. V. 227. P. 117530. https://doi.org/10.1016/j.jlumin.2020.117530
  18. Zi X., Liu C., Lu W. et al. // Z. Anorg. Allg. Chem. 2021. V. 647. P. 1. https://doi.org/10.1002/zaac.202100238
  19. Huang T.-H., Luo C., Zheng D. // Org. Electron. 2021. V. 97. P. 106273. https://doi.org/10.1016/j.orgel.2021.106273
  20. Song Y.-L., Jiao B.-J., Liu C.-M. et al. // Inorg. Chem. Commun. 2019. P. 107689. https://doi.org/10.1016/j.inoche.2019.107689
  21. Авдеева В.В., Дзиова А.Э., Полякова И.Н. и др. // Журн. неорган. химии. 2013. Т. 58. С. 746.
  22. Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 74. https://doi.org/10.1016/j.ica.2015.02.029
  23. Кочнев В.К., Авдеева В.В., Малинина Е.А., Кузнецов Н.Т. // Журн. неорган. химии. 2014. Т. 59. С. 1512.
  24. Korolenko S.E., Malinina E.A., Avdeeva V.V. et al. // Polyhedron. 2021. V. 194. P. 114902. https://doi.org/10.1016/j.poly.2020.114902
  25. Nikiforova S.E., Kubasov A.S., Goeva L.V. et al. // Polyhedron. 2022. V. 226. P. 116108. https://doi.org/10.1016/j.poly.2022.116108
  26. Korolenko S.E., Kubasov A.S., Khan N.A. et al. // J. Cluster Sci. 2022. https://doi.org/10.1007/s10876-022-02263-0
  27. Greenwood N.N., Morris J.H. // Proc. Chem. Soc. 1963. V. 11. P. 338.
  28. Авдеева В.В., Полякова И.В., Гоева Л.В. и др. // Журн. неорган. химии. 2015. Т. 60. С. 901.
  29. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  30. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  31. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  32. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  33. Korolenko S.E., Malinina E.A., Avdeeva V.V. et al. // Inorg. Chim. Acta. 2022. V. 539. P.121038. https://doi.org/10.1016/j.ica.2022.121038
  34. Малинина Е.А., Авдеева В.В., Короленко С.Е. и др. // Журн. неорган. химии. 2020. Т. 69. С. 1208.
  35. Xu Ch., Lv Le, Zhang Zh., Liu W. // J. Cluster Sci. 2020. https://doi.org/10.1007/s10876-020-01886-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (112KB)
3.

Download (77KB)
4.

Download (506KB)
5.

Download (1MB)
6.

Download (628KB)
7.

Download (1MB)
8.

Download (203KB)

Copyright (c) 2023 С.Е. Никифорова, А.С. Кубасов, О.Н. Белоусова, В.В. Авдеева, Е.А. Малинина, Н.Т. Кузнецов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies