MIXED-LIGAND LUMINESCENT Cu(I) COMPLEXES BASED ON 10-(ARYL)PHENOXARSINES AND ACETONITRILE WITH A CUBANE- TYPE Cu4I4 CORE
- Authors: Galimova M.F.1, Dobrynin A.B.1, Musin R.R.2, Kolesnikov I.E.3, Musina E.I.1, Karasik A.A.1
-
Affiliations:
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan National Research Technological University
- Center for Optical and Laser Materials Research, St Petersburg University
- Issue: Vol 70, No 11 (2025)
- Pages: 1561-1569
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/378184
- DOI: https://doi.org/10.7868/S3034560X25110131
- ID: 378184
Cite item
Abstract
About the authors
M. F. Galimova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: milya1949@mail.ru
Kazan, Russia
A. B. Dobrynin
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
R. R. Musin
Kazan National Research Technological UniversityKazan, Russia
I. E. Kolesnikov
Center for Optical and Laser Materials Research, St Petersburg UniversitySaint Petersburg, Russia
E. I. Musina
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
A. A. Karasik
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
References
- Mensah A., Shao J.-J., Ni J.-L. et al. // Front. Chem. 2022. V. 9. P. 816363. https://doi.org/10.3389/fchem.2021.816363
- Wallesch M., Volz D., Zink D. M. et al. // Chem. Eur. J. 2014. V. 20. P. 6578. https://doi.org/10.1002/chem.201402060
- Ильичева А.И., Бочкарев Л.Н., Ильичев В.А. // Журн. орг. химии. 2017. Т. 87. № 6. С. 964. https://doi.org/10.1134/S1070363217060135
- Гусев А.Н., Шульгин В.Ф., Минаев Б.Ф. и др. // Журн. неорган. химии. 2017. Т. 62. № 4. С. 419. https://doi.org/10.7868/S0044457X17040055
- Ford P.C., Cariati E., Bourassa J. // Chem. Rev. 1999. V. 99. P. 3625. https://doi.org/10.1021/cr960109i
- Perruchas S., Tard C., Goff X.F. Le et al. // Inorg. Chem. 2011. V. 50. P. 10682. https://doi.org/10.1021/ic201128a
- Tard C., Perruchas S., Maron S. et al. // Chem. Mater. 2008. V. 20. P. 7010. https://doi.org/10.1021/cm801780g
- Troyano J., Zamora F., Delgado S. // Chem. Soc. Rev. 2021. V. 50. P. 4606. https://doi.org/10.1039/D0CS01470B
- Shou R.E., Chai W.X., Song L. et al. // J. Cluster Sci. 2017. V. 28. P. 2185. https://doi.org/10.1007/s10876-017-1218-9
- Kobayashi A., Kato M. // Chem. Lett. 2017. V. 46. P. 154. https://doi.org/10.1246/cl.160794
- Benito Q., Le Goff X.F., Nocton G. et al. // Inorg. Chem. 2015. V. 54. P. 4483. https://doi.org/10.1021/acs.inorgchem.5b00321
- Huitorel B., El Moll H., Utrera-Melero R. et al. // Inorg. Chem. 2018. V. 57. P. 4328. https://doi.org/10.1021/acs.inorgchem.7b03160
- Taylor W.V., Cammack C.X., Shubert S.A. et al. // Inorg. Chem. 2019. V. 58. P. 16330. https://doi.org/10.1021/acs.inorgchem.9b00229
- Perruchas S., Goff X.F. Le, Maron S. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 10967. https://doi.org/10.1021/ja103431d
- Benito Q., Maurin I., Poggi M. et al. // J. Mater. Chem. C. 2016. V. 4. P. 11231. https://doi.org/10.1039/C6TC04262G
- Bartos P., Taborsky P., Necas M. // Phosphorus, Sulfur Silicon Relat. Elem. 2016. V. 191. P. 645. https://doi.org/10.1080/10426507.2015.1128926
- Huitorel B., El Moll H., Cordier M. et al. // Inorg. Chem. 2017. V. 56. P. 12379. https://doi.org/10.1021/acs.inorgchem.7b01870
- Huitorel B., Utrera-Melero R., Massuyeau F. et al. // Dalton Trans. 2019. V. 48. P. 7899. https://doi.org/10.1039/c9dt01161g
- Yang K., Li Sh.-L., Zhang F.-Q. et al. // Inorg. Chem. 2016. V. 55. P. 7323. https://doi.org/10.1021/acs.inorgchem.6b00922
- Kiracki K., Fejfarová K., Martinčík J. et al. // Inorg. Chem. 2017. V. 56. P. 4609. https://doi.org/10.1021/acs.inorgchem.7b00240
- Mazzeo P.P., Maini L., Petrolati A. et al. // Dalton Trans. 2014. V. 43. P. 9448. https://doi.org/10.1039/c4dt00218k
- Kyle K.R., Ryu C.K., Dibenedetto J.A. et al. // JACS. 1991. V. 113. P. 2954. https://doi.org/10.1021/ja00008a026
- Fu Z., Lin J., Wang L. et al. // Cryst. Growth Des. 2016. V. 16. P. 2322. https://doi.org/10.1021/acs.cgd.6b00114
- Jalilian E., Liao R.Z., Himo F. et al. // Mater. Res. Bull. 2011. V. 46. P. 1192. https://doi.org/10.1016/j.materresbull.2011.04.012
- Тойкка Ю. Н., Мерещенко А. С., Старова Г. Л. и др. // Журнал общей химии. 2022. Т. 92. С. 1275. https://doi.org/10.31857/S0044460X22080145
- Lapprand A., Dutartre M., Khiri N. et al. // Inorg. Chem. 2013. V. 52. P. 7958. https://doi.org/10.1021/ic400498j
- Neshat A., Babadi R., Mastrorilli P. et al. // Polyhedron. 2018. V. 154. P. 217. https://doi.org/10.1016/j.poly.2018.07.045
- Shan X.-C., Jiang F.-L., Chen L. et al. // J. Mater. Chem. C. 2013. V. 1. P. 4339. https://doi.org/10.1039/c3tc30482e
- Utrera-Melero R., Huitorel B., Cordier M. et al. // Inorg. Chem. 2020. V. 59. P. 13607. https://doi.org/10.1021/acs.inorgchem.0c01967
- Benito Q., Maurin I., Cheisson T. et al. // Chem. Eur. J. 2015. V. 21. P. 5892. https://doi.org/10.1002/chem.201500251
- Kitagawa H., Ozawa Y., Toriumi K. // Chem. Commun. 2010. V. 46. P. 6302. https://doi.org/10.1039/c0cc01434f
- Kobayashi R., Inaba R., Imoto H. et al. // Bull. Chem. Soc. Jpn. 2021. V. 94. P. 1340. https://doi.org/10.1246/bcsj.20210005
- Galimova M.F., Zueva E.M., Dobrynin A.B. et al. // Dalton Trans. 2020. V. 49. P. 482. https://doi.org/10.1039/c9dt04122b
- Galimova M.F., Zueva E.M., Dobrynin A.B. et al. // Dalton Trans. 2021. V. 50. P. 13421. https://doi.org/10.1039/d1dt02344f
- Galimova M.F., Zueva E.M., Petrova M.M. et al. // Dalton Trans. 2024. V. 53. P. 1087. https://doi.org/10.1039/d3dt03273f
- Taylor W.V., Soto U.H., Lynch V.M. et al. // Inorg. Chem. 2016. V. 55. P. 3206. https://doi.org/10.1021/acs.inorgchem.5b02933
- Demyanov Y.V., Rakhmanova M.I., Bagryanskaya I.Yu. et al. // Mendeleev Commun. 2023. V. 33. P. 484. https://doi.org/10.1016/j.mncom.2023.06.014
- Demyanov Y.V., Ma Z., Jia Zh. et al. // Adv. Optical Mater. 2024. V. 12. P. 2302904. https://doi.org/10.1002/adom.202302904
- Imoto H., Naka K. // Chem. Eur. J. 2019. V. 25. P. 1883. https://doi.org/10.1002/chem.201804114
- Artem'ev A.V., Demyanov Y.V., Rakhmanova M.I. et al. // Dalton Trans. 2022. V. 51. P. 1048. https://doi.org/10.1039/d1dt03759e
- Musina E.I., Galimova M.F., Musin R.R. et al. // ChemistrySelect. 2017. V. 2. P. 11755. https://doi.org/10.1002/slct.201702031
- Добрынин А.Б., Галимова М.Ф., Мусина Э.И. и др. // ЖСХ. 2020. Т. 61. С. 2039. https://doi.org/10.26902/JSC_id65960
- Гаврилов В.И., Гаврилова Г.Р., Хлебников В.Н. и др. // Известия высших учебных заведений. Серия “Химия и химическая технология”. 1973. T. 12. C. 1602.
- Sheldrick G.M. SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius, 1990-2004.
- Altomare A., Cascarano G., Giacovazzo C. et al. // Acta Crystallogr., Sect. A. 1991. V. 47. P. 744. https://doi.org/10.1107/S0108767391006566
- Sheldrick G.M.A. // Acta Crystallogr., Sect. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S010876730743930
- Farrugia L.J. // J. Appl. Crystallogr. 1999. V. 32. P. 837. https://doi.org/10.1107/S0021889899006020
- APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A), Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
- Spek A.L. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
- Fang Y., Liu W., Teat S.J. et al. // Adv. Funct. Mater. 2017. V. 27. P. 1603444. https://doi.org/10.1002/adfm.201603444
- Churchill M.R., Kalra K.L. // Inorg. Chem. 1974. V. 13. P. 1899.
- Bondi A. // J. Phys. Chem. 1964. V. 68. P. 441. https://doi.org/10.1021/j100785a001
Supplementary files


