MIXED-LIGAND LUMINESCENT Cu(I) COMPLEXES BASED ON 10-(ARYL)PHENOXARSINES AND ACETONITRILE WITH A CUBANE- TYPE Cu4I4 CORE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Copper(I) complexes I and II of composition [L3Cu4I4(CH3CN)] (where L1 = 10-(4-tolyl)phenoxarsine L2 = 10-(4-bromophenyl)phenoxarsine) were obtained by the mechanosynthesis consisting of grinding powders of 10-(aryl)phenoxarsines and copper(I) iodide in an equimolar ratio with the addition of a small amount of acetonitrile. The complexes were characterized by mass spectrometry, elemental analysis, and 1H NMR spectroscopy. The molecular structure of complex I was confirmed by X-ray diffraction (CCDC No. 2468768 (I)). Cluster has the cubane-type geometry. All of the complexes exhibit orange emission.

About the authors

M. F. Galimova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: milya1949@mail.ru
Kazan, Russia

A. B. Dobrynin

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

R. R. Musin

Kazan National Research Technological University

Kazan, Russia

I. E. Kolesnikov

Center for Optical and Laser Materials Research, St Petersburg University

Saint Petersburg, Russia

E. I. Musina

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

A. A. Karasik

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

References

  1. Mensah A., Shao J.-J., Ni J.-L. et al. // Front. Chem. 2022. V. 9. P. 816363. https://doi.org/10.3389/fchem.2021.816363
  2. Wallesch M., Volz D., Zink D. M. et al. // Chem. Eur. J. 2014. V. 20. P. 6578. https://doi.org/10.1002/chem.201402060
  3. Ильичева А.И., Бочкарев Л.Н., Ильичев В.А. // Журн. орг. химии. 2017. Т. 87. № 6. С. 964. https://doi.org/10.1134/S1070363217060135
  4. Гусев А.Н., Шульгин В.Ф., Минаев Б.Ф. и др. // Журн. неорган. химии. 2017. Т. 62. № 4. С. 419. https://doi.org/10.7868/S0044457X17040055
  5. Ford P.C., Cariati E., Bourassa J. // Chem. Rev. 1999. V. 99. P. 3625. https://doi.org/10.1021/cr960109i
  6. Perruchas S., Tard C., Goff X.F. Le et al. // Inorg. Chem. 2011. V. 50. P. 10682. https://doi.org/10.1021/ic201128a
  7. Tard C., Perruchas S., Maron S. et al. // Chem. Mater. 2008. V. 20. P. 7010. https://doi.org/10.1021/cm801780g
  8. Troyano J., Zamora F., Delgado S. // Chem. Soc. Rev. 2021. V. 50. P. 4606. https://doi.org/10.1039/D0CS01470B
  9. Shou R.E., Chai W.X., Song L. et al. // J. Cluster Sci. 2017. V. 28. P. 2185. https://doi.org/10.1007/s10876-017-1218-9
  10. Kobayashi A., Kato M. // Chem. Lett. 2017. V. 46. P. 154. https://doi.org/10.1246/cl.160794
  11. Benito Q., Le Goff X.F., Nocton G. et al. // Inorg. Chem. 2015. V. 54. P. 4483. https://doi.org/10.1021/acs.inorgchem.5b00321
  12. Huitorel B., El Moll H., Utrera-Melero R. et al. // Inorg. Chem. 2018. V. 57. P. 4328. https://doi.org/10.1021/acs.inorgchem.7b03160
  13. Taylor W.V., Cammack C.X., Shubert S.A. et al. // Inorg. Chem. 2019. V. 58. P. 16330. https://doi.org/10.1021/acs.inorgchem.9b00229
  14. Perruchas S., Goff X.F. Le, Maron S. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 10967. https://doi.org/10.1021/ja103431d
  15. Benito Q., Maurin I., Poggi M. et al. // J. Mater. Chem. C. 2016. V. 4. P. 11231. https://doi.org/10.1039/C6TC04262G
  16. Bartos P., Taborsky P., Necas M. // Phosphorus, Sulfur Silicon Relat. Elem. 2016. V. 191. P. 645. https://doi.org/10.1080/10426507.2015.1128926
  17. Huitorel B., El Moll H., Cordier M. et al. // Inorg. Chem. 2017. V. 56. P. 12379. https://doi.org/10.1021/acs.inorgchem.7b01870
  18. Huitorel B., Utrera-Melero R., Massuyeau F. et al. // Dalton Trans. 2019. V. 48. P. 7899. https://doi.org/10.1039/c9dt01161g
  19. Yang K., Li Sh.-L., Zhang F.-Q. et al. // Inorg. Chem. 2016. V. 55. P. 7323. https://doi.org/10.1021/acs.inorgchem.6b00922
  20. Kiracki K., Fejfarová K., Martinčík J. et al. // Inorg. Chem. 2017. V. 56. P. 4609. https://doi.org/10.1021/acs.inorgchem.7b00240
  21. Mazzeo P.P., Maini L., Petrolati A. et al. // Dalton Trans. 2014. V. 43. P. 9448. https://doi.org/10.1039/c4dt00218k
  22. Kyle K.R., Ryu C.K., Dibenedetto J.A. et al. // JACS. 1991. V. 113. P. 2954. https://doi.org/10.1021/ja00008a026
  23. Fu Z., Lin J., Wang L. et al. // Cryst. Growth Des. 2016. V. 16. P. 2322. https://doi.org/10.1021/acs.cgd.6b00114
  24. Jalilian E., Liao R.Z., Himo F. et al. // Mater. Res. Bull. 2011. V. 46. P. 1192. https://doi.org/10.1016/j.materresbull.2011.04.012
  25. Тойкка Ю. Н., Мерещенко А. С., Старова Г. Л. и др. // Журнал общей химии. 2022. Т. 92. С. 1275. https://doi.org/10.31857/S0044460X22080145
  26. Lapprand A., Dutartre M., Khiri N. et al. // Inorg. Chem. 2013. V. 52. P. 7958. https://doi.org/10.1021/ic400498j
  27. Neshat A., Babadi R., Mastrorilli P. et al. // Polyhedron. 2018. V. 154. P. 217. https://doi.org/10.1016/j.poly.2018.07.045
  28. Shan X.-C., Jiang F.-L., Chen L. et al. // J. Mater. Chem. C. 2013. V. 1. P. 4339. https://doi.org/10.1039/c3tc30482e
  29. Utrera-Melero R., Huitorel B., Cordier M. et al. // Inorg. Chem. 2020. V. 59. P. 13607. https://doi.org/10.1021/acs.inorgchem.0c01967
  30. Benito Q., Maurin I., Cheisson T. et al. // Chem. Eur. J. 2015. V. 21. P. 5892. https://doi.org/10.1002/chem.201500251
  31. Kitagawa H., Ozawa Y., Toriumi K. // Chem. Commun. 2010. V. 46. P. 6302. https://doi.org/10.1039/c0cc01434f
  32. Kobayashi R., Inaba R., Imoto H. et al. // Bull. Chem. Soc. Jpn. 2021. V. 94. P. 1340. https://doi.org/10.1246/bcsj.20210005
  33. Galimova M.F., Zueva E.M., Dobrynin A.B. et al. // Dalton Trans. 2020. V. 49. P. 482. https://doi.org/10.1039/c9dt04122b
  34. Galimova M.F., Zueva E.M., Dobrynin A.B. et al. // Dalton Trans. 2021. V. 50. P. 13421. https://doi.org/10.1039/d1dt02344f
  35. Galimova M.F., Zueva E.M., Petrova M.M. et al. // Dalton Trans. 2024. V. 53. P. 1087. https://doi.org/10.1039/d3dt03273f
  36. Taylor W.V., Soto U.H., Lynch V.M. et al. // Inorg. Chem. 2016. V. 55. P. 3206. https://doi.org/10.1021/acs.inorgchem.5b02933
  37. Demyanov Y.V., Rakhmanova M.I., Bagryanskaya I.Yu. et al. // Mendeleev Commun. 2023. V. 33. P. 484. https://doi.org/10.1016/j.mncom.2023.06.014
  38. Demyanov Y.V., Ma Z., Jia Zh. et al. // Adv. Optical Mater. 2024. V. 12. P. 2302904. https://doi.org/10.1002/adom.202302904
  39. Imoto H., Naka K. // Chem. Eur. J. 2019. V. 25. P. 1883. https://doi.org/10.1002/chem.201804114
  40. Artem'ev A.V., Demyanov Y.V., Rakhmanova M.I. et al. // Dalton Trans. 2022. V. 51. P. 1048. https://doi.org/10.1039/d1dt03759e
  41. Musina E.I., Galimova M.F., Musin R.R. et al. // ChemistrySelect. 2017. V. 2. P. 11755. https://doi.org/10.1002/slct.201702031
  42. Добрынин А.Б., Галимова М.Ф., Мусина Э.И. и др. // ЖСХ. 2020. Т. 61. С. 2039. https://doi.org/10.26902/JSC_id65960
  43. Гаврилов В.И., Гаврилова Г.Р., Хлебников В.Н. и др. // Известия высших учебных заведений. Серия “Химия и химическая технология”. 1973. T. 12. C. 1602.
  44. Sheldrick G.M. SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius, 1990-2004.
  45. Altomare A., Cascarano G., Giacovazzo C. et al. // Acta Crystallogr., Sect. A. 1991. V. 47. P. 744. https://doi.org/10.1107/S0108767391006566
  46. Sheldrick G.M.A. // Acta Crystallogr., Sect. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S010876730743930
  47. Farrugia L.J. // J. Appl. Crystallogr. 1999. V. 32. P. 837. https://doi.org/10.1107/S0021889899006020
  48. APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A), Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
  49. Spek A.L. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
  50. Fang Y., Liu W., Teat S.J. et al. // Adv. Funct. Mater. 2017. V. 27. P. 1603444. https://doi.org/10.1002/adfm.201603444
  51. Churchill M.R., Kalra K.L. // Inorg. Chem. 1974. V. 13. P. 1899.
  52. Bondi A. // J. Phys. Chem. 1964. V. 68. P. 441. https://doi.org/10.1021/j100785a001

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).