In vitro study of antiviral properties of compounds based on tetrahydropyran derivative of closo-decaborate anion with amino acid ester residues against influenza virus A/IIV-Orenburg/83/2012(H1N1)pdm09
- Authors: Garaev T.М.1, Yudin I.I.1, Breslav N.V.1, Grebennikova T.V.1, Burtseva E.I.1, Matveev E.Y.2,3, Eshtukova-Shcheglova E.A.2, Sokolov I.Е.2, Avdeeva V.V.3, Zhizhin K.Y.2,3, Kuznetsov N.Т.3
-
Affiliations:
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
- MIREA – Russian Technological University
- Kurnakov Institute of General and Inorganic Chemistry
- Issue: Vol 70, No 2 (2025)
- Pages: 232-243
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/289467
- DOI: https://doi.org/10.31857/S0044457X25020093
- EDN: https://elibrary.ru/ICJVHC
- ID: 289467
Cite item
Abstract
Based on the substituted derivative of the decahydro-closo-decaborate anion (Ph4P)2[B10H9O(CH2)5COOH] obtained by opening the tetrahydropyran substituent in the anion [B10H9O(CH2)5]–, a series of compounds Na2[B10H9O(CH2)6C(O)X], where X = Trp-OMe (1), His-OMe (2), Met-OMe (3), Pld-OMe (4), containing various amino acid substituents attached to the pendant carboxyl group, were synthesized. The compounds were isolated as sodium salts. The residues of L-tryptophan (Na21) and L-histidine (Na22) contained aromatic heterocyclic groups indole and imidazole, respectively, as a side group. Compounds Na23 and Na24 contained substituted alkanes as a side group: L-methionine (Na23) contained a methyl ethyl sulfide group, and compound Na24 contained the residue of an aliphatic synthetic amino acid in which the side group was represented by γ-butyrolactam (pyrrolidin-2-one). Compounds Na21 and Na22 were found to exhibit dose-dependent antiviral activity against the influenza virus strain A/IIV-Orenburg/83/2012(H1N1)pdm09 in vitro. IC50 for compound Na21 was 5.0 μg/ml, and for compound Na22 it was found to be 10.0 μg/ml. Molecular docking of the M2 protein pore and compounds Na21 and Na22 was performed. It was found that the most probable arrangement of molecules in the pore of the M2 channel is associated with the location of the heterocycle inside the pore of the M2 channel in the region of the residues His37–Trp41, and for the compound Na21 this an arrangement is more favorable than for Na22, which explains some difference in the concentrations of suppression of viral reproduction for Na21 and Na22. For compounds Na23and Na24, antiviral activity was not detected.
Full Text

About the authors
T. М. Garaev
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 123098
I. I. Yudin
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 123098
N. V. Breslav
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 123098
T. V. Grebennikova
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 123098
E. I. Burtseva
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 123098
E. Yu. Matveev
MIREA – Russian Technological University; Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Lomonosov Institute of Fine Chemical Technologies
Russian Federation, Moscow, 119571; Moscow, 119991E. A. Eshtukova-Shcheglova
MIREA – Russian Technological University
Email: avdeeva.varvara@mail.ru
Lomonosov Institute of Fine Chemical Technologies
Russian Federation, Moscow, 119571I. Е. Sokolov
MIREA – Russian Technological University
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571
V. V. Avdeeva
Kurnakov Institute of General and Inorganic Chemistry
Author for correspondence.
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119991
K. Yu. Zhizhin
MIREA – Russian Technological University; Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Lomonosov Institute of Fine Chemical Technologies
Russian Federation, Moscow, 119571; Moscow, 119991N. Т. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119991
References
- Reid A.H., Taubenberger J.K., Fanning T.G. // Microbes Infect. 2001. V. 3. P. 81. https://doi.org/10.1016/s1286-4579(00)01351-4
- Garten R.J., Davis C.T., Russell C.A., Shu B. // Science. 2009. V. 325. P. 197. https://doi.org/10.1126/science.1176225
- WHO. Avian influenza in humans. 2012. http://www.who.int/csr/disease/avian_influenza/
- Imai M., Watanabe T., Hatta M. et al. // Nature. 2012. V. 486. P. 420. https://doi.org/10.1038/nature10831
- Herfst S., Schrauwen E.J.A., Linster M. et al. // Science. 2012. V. 336. P. 1534. https://doi.org/10.1126/science.1213362
- WHO. Global Influenza Programme. 2012. Available: http://www.who.int/influenza/en/
- Mohanty P., Panda P., Acharya R.K. et al. // World J. Virol. 2023. V. 12. P. 242. https://doi.org/10.5501/wjv.v12.i5.242
- Batool S., Chokkakula S., Song M.S. // Microorganisms. 2023. V. 11. P. 183. https://doi.org/10.3390/microorganisms11010183
- Toots M., Plemper R.K. // Transl Res. 2020. V. 220. P. 33. https://doi.org/10.1016/j.trsl.2020.01.005
- Нелюбин А.В., Клюкин И.Н., Жданов А.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 134. https://doi.org/10.31857/S0044457X21020136
- Nelyubin A.V., Klyukin I.N., Zhdanov A.P. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1750. https://doi.org/10.1134/S0036023619140043
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- Акимов С.С., Матвеев Е.Ю., Разгоняева Г.А. и др. // Изв. АН. Сер. хим. 2010. № 2. С. 364.
- Klyukin I.N., Zhdanov A.P., Matveev E.Yu. et al. // Inorg. Chem. Commun. 2014. V. 50. P. 28. https://doi.org/10.1016/j.inoche.2014.10.008
- Klyukin I.N., Kubasov A.S., Limarev I.P. et al. // Polyhedron. 2015. V. 101. P. 215. https://doi.org/10.1016/j.poly.2015.09.025
- Клюкин И.Н., Воинова В.В., Селиванов Н.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1536.
- Матвеев Е.Ю., Кубасов А.С., Разгоняева Г.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 858.
- Retivov V.M., Matveev E.Yu., Lisovskiy M.V. et al. // Russ. Chem. Bull. 2010. V. 59. P. 550. https://doi.org/10.1007/s11172-010-0123-2
- Al-Joumhawy M., Cendoya P., Shmalko A. et al. // J. Organomet. Chem. 2021. V. 949. P. 121967. https://doi.org/10.1016/j.jorganchem.2021.121967
- Laila Z., Ghaida F., Anwar S. et al. // Main Group Chem. 2015. V. 14. P. 301. https://doi.org/10.3233/MGC-150173
- Hawthorne M.F., Mavunkal I.J., Knobler C.B. // J. Am. Chem. Soc. 1992. V. 114. P. 4427. https://doi.org/10.1021/ja00037a074
- Laila Z., Yazbeck O., Ghaida F. et al. // J. Organomet. Chem. 2020. V. 910. P. 121132. https://doi.org/10.1016/j.jorganchem.2020.121132
- Norman A.H., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 2316. https://doi.org/10.1021/ic50140a005
- Peymann T., Hawthorne M.F. // Inorg. Chem. 2000. V. 39. P.1163.
- Hall H.D., Ulrich B.D., Kultyshev R.G. et al. // Collect. Czech. Chem. Commun. 2002. V. 67. P. 1007. https://doi.org/10.1135/cccc20021007
- Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
- Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czech. Chem. Commun. 2002. V. 67. P. 679. https://doi.org/10.1135/cccc20020679
- Peymann T., Gabel D. // Inorg. Chem. 1997. V. 36. P. 5138. https://doi.org/10.1021/ic970647t
- Prikaznov A.V., Semioshkin A.A., Sivaev I.B. et al. // Russ. Chem. Bull. 2011. V. 60. P. 2550. https://doi.org/10.1007/s11172-011-0392
- Justus E., Izteleuova D.T., Kasantsev A.V. et al. // Collect. Czech. Chem. Commun. 2007. V. 72. P. 1740. https://doi.org/10.1135/cccc200071740
- Serdyukov A., Kosenko I., Druzina A. et al. // J. Organomet. Chem. 2021. V. 946. P. 121905. https://doi.org/10.1016/j.jorganchem.2021.121905
- Matveev E.Y., Kubasov A.S., Nichugovskii A.I. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 644. https://doi.org/10.1134/S0036023623600545
- Imperio D., Muz B., Azab A.K. et al. // Eur. J. Org. Chem. 2019. V. 2019. P. 7228. https://doi.org/10.1002/ejoc.201901412
- Matveev E.Y., Razgonyaeva G.A., Mustyatsa V.N. et al. // Russ. Chem. Bull. 2010. V. 59. P. 556. https://doi.org/10.3390/inorganics10120238
- Semioshkin A., Laskova J., Ilinova A. et al. // J. Organomet. Chem. 2011. V. 696. P. 539.
- Matveev E.Y., Retivov V.M., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. P. 1549. https://doi.org/10.1134/S0036023611100160
- Матвеев Е.Ю., Лимарев И.П., Ничуговский А.И. и др. // Журн. неорган. химии. 2019. Т. 64. № 8. С. 811. https://doi.org/10.1134/S0044457X19080087
- Матвеев Е.Ю., Левицкая В.Я., Новиков С.С. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1717. https://doi.org/10.31857/S0044457X22601031
- Orlova A.V., Kondakov N.N., Kimel B.G. et al. // Appl. Organomet. Chem. 2007. V. 21. P. 98. https://doi.org/10.1002/aoc.1151
- Druzina A.A., Zhidkova O.B., Kosenko I.D. // Russ. Chem. Bull. 2020. V. 69. P. 1080. https://doi.org/10.1007/s11172-020-2870-z
- Meschaninova M.I., Novopashina D.S., Semikolenova O.A. et al. // Molecules. 2019. V. 24. № 23. P. 4266. https://doi.org/10.3390/molecules24234266
- Druzina A.A., Grammatikova N.E., Zhidkova O.B. et al. // Molecules. 2022. V. 27. P. 2920. https://doi.org/10.3390/molecules27092920
- Semioshkin A., Laskova J., Wojtczak B. et al. // J. Organomet. Chem. 2009. V. 694. P. 1375. https://doi.org/10.1016/j.jorganchem.2008.12.024
- Shibnev V.A., Deryabin P.G., Garaev T.M. et al. // Russ. J. Bioorg. Chem. 2017. V. 43. P. 517. https://doi.org/10.1134/S1068162017050132
- Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
- Garaev T.M., Grebennikova T.V., Avdeeva V.V. et al. // Probl. Virol. (Vopr. Virusol.). 2023. V. 68. P. 18. https://doi.org/10.36233/0507-4088-147
- Жижин К.Ю., Мустяца В.Н., Малинина Е.А. и др. // Журн. неорган. химии. 2004. Т. 49. № 2. С. 221.
- Shibnev V.A., Garaev T.M., Finogenova M.P. et al. // Bull. Exp. Biol. Med. 2012. V. 153. P. 233. https://doi.org/10.1007/s10517-012-1684-x
- Corso G., Jing H., Barzilay B., Jaakkola R. // DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. 2022. https://doi.org/10.48550/arXiv.2210.01776
- Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. // J. Chem. Inf. Model. 2021. V. 23. P. 3891. https://doi.org/10.1021/acs.jcim.1c00203
- Ryabchikova M.N., Nelyubin A.V., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601892
- Ryabchikova M.N., Nelyubin A.V., Smirnova A.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S003602362460093X
- Сиваев И.Б. Дис. … докт. хим. наук. М., 2014.
- Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 28. https://doi.org/10.1134/S0036023622010028
- Fu R., Miao Y., Qin H. // J. Am. Chem. Soc. 2020. V. 142. P. 2115. https://doi.org/10.1021/jacs.9b09985
Supplementary files
