Novel double complex salts [M(im) n][RuNOCl5] (M = Ni, Cu): synthesis, structure, thermal properties

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Methods for the synthesis of new double complex salts [Cu(im)4][RuNOCl5], [Ni(im)6][RuNOCl5]·H2O and [Ni(im)4(DMF)2][RuNOCl5] have been developed and their crystalline crystalline properties have been determined. structure. The thermal properties of synthesized DCS were studied in inert and reducing atmospheres using synchronous TG–DTA/EGA–MS analysis and ex situ X-ray diffraction of intermediate and final thermolysis products. It has been established that thermal decomposition occurs in three stages. The final products of thermolysis of [Cu(im)4][RuNOCl5] in inert and reducing atmospheres are a mixture of copper and ruthenium, and the product of thermal decomposition of [Ni(im)6][RuNOCl5]·H2O in an inert atmosphere is a mixture of nickel and ruthenium. In the nickel-ruthenium system, upon thermolysis in a reducing atmosphere in the range of up to 400°C, it is possible to obtain a supersaturated solid solution of Ni0.27Ru0.73. Increasing the thermolysis temperature to 800°C leads to partial decomposition of the solid solution.

全文:

受限制的访问

作者简介

А. Borodin

Nikolaev Institute of Inorganic Chemistry

编辑信件的主要联系方式.
Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

E. Filatov

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

P. Plusnin

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

N. Kuratieva

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

S. Korenev

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

G. Kostin

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

参考

  1. Fukuda R., Takagi N., Sakaki S. et al. // J. Phys. Chem. С. 2017. V. 121. P. 300. https://doi.org/acs.jpcc.6b09280
  2. Martynova S.A., Filatov E.Yu., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
  3. Liu J., Zhang L.L., Zhang J. et al. // Nanoscale. 2013. V. 22 P. 11044. https://doi.org/10.1039/C3NR03813K
  4. Thirumalai D., Lee J.-U., Choi H. et al. // Chem. Commun. 2021. V. 54. P. 1947. https://doi.org/10.1039/D0CC07518C
  5. Masson G.H.C., Cruz T.R., Gois P.D.S. et al. // New J. Chem. 2021. V. 45. P. 11466. https://doi.org/10.1039/D1NJ01498F
  6. Sreenavya A., Ahammed S., Ramachandran A. et al. // Catal. Letters. 2022. V. 152. P. 848. https://doi.org/10.1007/s10562-021-03673-x
  7. Elia N., Estephane J., Poupin C. et al. // ChemCatChem. 2021. V. 13. P. 1559. https://doi.org/10.1002/cctc.202001687
  8. Ishihara A., Qian E.W., Finahari I.N. et al. // Fuel. 2005. V. 84. P. 1462. https://doi.org/10.1016/j.fuel.2005.03.006
  9. Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. P. 62. https://doi.org/10.1134/S2070050418010099
  10. Kostin G.A., Plyusnin P.E., Filatov E.Y. et al. // Polyhedron. 2019. V. 159. P. 217. https://doi.org/10.1016/j.poly.2018.11.065
  11. Filatov E.Yu., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. P. 19009. https://doi.org/10.1039/D2NJ03402F
  12. Плюснин П.Е., Шубин Ю.В., Коренев С.В. // Журн. структур. химии. 2022. Т. 63. № 3. С. 271.
  13. Mercer E.E., McAllister W.A., Durig J.R. // Inorg. Chem. 1966. V. 5. P. 1881. https://doi.org/10.1021/ic50045a010
  14. Archer S.J., Auf der Heyde T.P.E., Foulds G.A. et al. // Trans. Met. Chem. 1982. V. 7. P. 59. https://doi.org/10.1007/BF00623811
  15. Naumov P., Jovanovski G. // Spectrosc. Lett. 1999. V. 32. P. 237. https://doi.org/10.1080/00387019909349980
  16. Powder Diffraction File, PDF-2, International Centre for Diffraction Data, Pennsylvania, USA. Powder Diffr. File, PDF-2, Int. Cent. Diffr. Data, Pennsylvania, USA (2014).
  17. Kraus W., Nolze G. POWDERCELL 2.4. Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, 2000.
  18. Krumm S. An interactive Windows program for profile fitting and size/strain analysis, Mater. Sci. Forum, 1996. P. 228.
  19. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  20. Enemark J.H., Feltham R.D. // Coord. Chem. Rev. 1974. V. 13. P. 339. https://doi.org/10.1002/9780470145227.ch88
  21. Sanchis-Perucho A., Martínez-Lillo J. // Dalton Trans. 2019. V. 48. P. 13925. https://doi.org/10.1039/c9dt02884f
  22. Samoľova E., Kuchar J., Grzimek V. et al. // Polyhedron. 2019. V. 170. P. 51. https://doi.org/10.1016/j.poly.2019.05.024
  23. Pedersen A.H., Julve M., Martínez-Lillo J. et al. // Dalton Trans. 2017. V. 46. P. 16025. https://doi.org/10.1039/c7dt02216f
  24. Mwanza T., Kürkçüoğlu G.S., Ünver H. et al. // J. Solid State Chem. 2022. V. 314. P. 123344. https://doi.org/10.1016/j.jssc.2022.123344
  25. Jikun Li, Xianqiang Huang, Song Yang et al. // Cryst. Growth Des. 2015. V. 15. № 4. P. 1907. https://doi.org/10.1021/acs.cgd.5b00086
  26. Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. P. 118092. https://doi.org/10.26902/jsc_id118092
  27. Скорик Н.А., Ильина К.А., Козик В.В. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1597. https://doi.org/10.31857/S0044457X21110180
  28. Костин Г.А., Бородин А.О., Куратьева Н.В. и др. // Коорд. химия. 2013. Т. 39. № 4. С. 244. https://doi.org/10.7868/S0132344X13040063

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculated (1) and experimental (2) diffraction patterns for [Cu(im)4][RuNOCl5] (a) and [Ni(im)6][RuNOCl5] · H2O (b)

下载 (129KB)
3. Fig. 2. Cationic and anionic parts of the [Cu(im)4][RuNOCl5] DCS. Hydrogen atoms are not shown for clarity, thermal ellipsoids are given with a probability of 50% (a). Packing of anionic and cationic fragments in the [Cu(im)4][RuNOCl5] DCS (b)

下载 (233KB)
4. Fig. 3. Cationic and anionic fragments in the DCS [Ni(im)4(DMF)2][RuNOCl5]

下载 (90KB)
5. Fig. 4. Thermal analysis curves for [Cu(im)4][RuNOCl5] in inert (red lines) and reducing (black lines) atmospheres

下载 (278KB)
6. Fig. 5. Thermal analysis curves for [Ni(im)6][RuNOCl5] · H2O in inert (red lines) and reducing (black lines) atmospheres

下载 (261KB)
7. Fig. 6. Experimental diffraction patterns of the products of thermal decomposition of DCS [Cu(im)4][RuNOCl5] (a) and [Ni(im)6][RuNOCl5] · H2O (b) in a hydrogen atmosphere at different temperatures

下载 (198KB)
8. Fig. 7. Experimental diffraction patterns of the products of thermal decomposition in a hydrogen atmosphere of DCS [Cu(im)4][RuNOCl5] at 800C (a) and [Ni(im)6][RuNOCl5] H2O at 400C (b), theoretical diffraction patterns corresponding to metallic Cu, Ni, Ru and solid solution Ni0.27Ru0.73, as well as difference curves between the experimental diffraction pattern and the total theoretical

下载 (217KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».