Synthesis of triethylammonium salts of amidine derivatives of closo-borate anions [B10H10]2– and [B12H12]2– and investigation of their cytotoxic properties
- Authors: Ryabchikova M.N.1, Nelyubin A.V.2, Klyukin I.N.2, Karpechenko N.Y.3,4, Zhdanov A.P.2, Zhizhin K.Y.2, Kuznetsov N.T.2
-
Affiliations:
- National Research University Higher School of Economics
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
- Pirogov Russian National Research Medical University
- Issue: Vol 69, No 9 (2024)
- Pages: 1284-1290
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/280493
- DOI: https://doi.org/10.31857/S0044457X24090086
- EDN: https://elibrary.ru/JSUCSO
- ID: 280493
Cite item
Abstract
A series of amidine derivatives of closo-deca- and dodecaborate anions with triethylammonium cations were obtained in this work. The structure of the compounds was established by multinuclear NMR spectroscopy, ESI-mass spectrometry. Cytotoxicity was investigated for all obtained compounds by MTT method on 4 cell lines. It was shown that the nature of the cation does not affect the cytotoxicity of substituted closo-borates.
Keywords
Full Text

About the authors
M. N. Ryabchikova
National Research University Higher School of Economics
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 101000
A. V. Nelyubin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991
I. N. Klyukin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991
N. Yu. Karpechenko
Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; Pirogov Russian National Research Medical University
Email: zhdanov@igic.ras.ru
Department of Medicinal Chemistry and Toxicology
Russian Federation, Moscow, 115522; Moscow, 117513A. P. Zhdanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991
K. Yu. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991
N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991
References
- Druzina A.A., Grammatikova N.E., Zhidkova O.B. et al. // Molecules. 2022. V. 27. № 9. P. 2920. https://doi.org/10.3390/molecules27092920
- Różycka D., Leśnikowski Z.J., Olejniczak A.B. // J. Organomet. Chem. 2019. V. 881. P. 19. https://doi.org/10.1016/j.jorganchem.2018.11.037
- Vaňková E., Lokočová K., Maťátková O. et al. // J. Organomet. Chem. 2019. V. 899. P. 120891. https://doi.org/10.1016/j.jorganchem.2019.120891
- Sun Y., Zhang J., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 41. P. 10364. https://doi.org/10.1002/chem.201801602
- Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent. Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
- Laskova J., Kozlova A., Ananyev I. et al. // J. Organomet. Chem. 2017. V. 834. P. 64. https://doi.org/10.1016/j.jorganchem.2017.02.009
- Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
- Matveev E.Yu., Garaev T.M., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 670. https://doi.org/10.1134/S0036023623600533
- Seneviratne D.S., Saifi O., Mackeyev Y. et al. // Cells. 2023. V. 12. № 10. P. 1398. https://doi.org/10.3390/cells12101398
- Novopashina D.S., Vorobyeva M.A., Venyaminova A. // Front. Chem. 2021. V. 9. https://doi.org/10.3389/fchem.2021.619052
- Kaniowski D., Kulik K., Ebenryter-Olbińska K. et al. // Biomolecules. 2020. V. 10. № 5. P. 718. https://doi.org/10.3390/biom10050718
- Kanygin V., Zaboronok A., Taskaeva I. et al. // J. Fluoresc. 2021. V. 31. № 1. P. 73. https://doi.org/10.1007/s10895-020-02637-5
- Shakirova O.G., Lavrenova L.G., Bogomyakov A.S. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 786. https://doi.org/10.1134/S003602361507013X
- Shakirova O.G., Daletskii V.A., Lavrenova L.G. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 6. P. 650. https://doi.org/10.1134/S0036023613060211
- Fisher S.P., Tomich A.W., Lovera S.O. et al. // Chem. Rev. 2019. V. 119. № 14. P. 8262. https://doi.org/10.1021/acs.chemrev.8b00551
- Wang Z., Wang Z., Ma X. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 60. P. 30750. https://doi.org/10.1016/j.ijhydene.2021.06.196
- Wang Z., Liu Y., Zhang H. et al. // J. Colloid Interface Sci. 2020. V. 566. P. 135. https://doi.org/10.1016/j.jcis.2020.01.047
- Deng X., Liu X., Xia S. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2023. V. 677. P. 132352. https://doi.org/10.1016/J.COLSURFA.2023.132352
- Emin Kilic M., Jena P. // J. Phys. Chem. Lett. 2023. V. 14. № 39. P. 8697. https://doi.org/10.1021/acs.jpclett.3c02222
- Duchêne L., Kim D.H., Song Y.B. et al. // Energy Storage Mater. 2020. V. 26. № July 2019. P. 543. https://doi.org/10.1016/j.ensm.2019.11.027
- Gigante A., Duchêne L., Moury R. et al. // ChemSusChem. 2019. V. 12. № 21. P. 4832. https://doi.org/10.1002/cssc.201902152
- Deysher G., Chen Y.-T., Sayahpour B. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 42. P. 47706. https://doi.org/10.1021/acsami.2c12759
- Duchêne L., Remhof A., Hagemann H. et al. // Energy Storage Mater. 2020. V. 25. № August. P. 782. https://doi.org/10.1016/j.ensm.2019.08.032
- Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. V. 11. № 8. P. 977. https://doi.org/10.1039/b715363e
- Prikaznov A.V., Bragin V.I., Davydova M.N. et al. // Collect. Czech. Chem. Commun. 2007. V. 72. № 12. P. 1689. https://doi.org/10.1135/cccc20071689
- Ryabchikova M.N., Neumolotov N.K., Nelyubin A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 14. P. 1923. https://doi.org/10.1134/S0036023623603252
- Al-Joumhawy M.K., Chang J.C., Sabzi F. et al. // Molecules. 2023. V. 28. № 7. https://doi.org/10.3390/molecules28073245
- Kaszyński P., Ringstrand B. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
- Tokarz P., Kaszyński P., Domagała S. et al. // J. Organomet. Chem. 2015. V. 798. P. 70. https://doi.org/10.1016/j.jorganchem.2015.07.035
- Ali M.O., Lasseter J.C., Żurawiński R. et al. // Chem. Eur. J. 2019. V. 25. № 10. P. 2616. https://doi.org/10.1002/chem.201805392
- Järvinen J., Pulkkinen H., Rautio J. et al. // Pharmaceutics. 2023. V. 15. № 12. P. 2663. https://doi.org/10.3390/pharmaceutics15122663
- Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
- Nishimura K., Harrison S., Kawai K. et al. // Bioorg. Med. Chem. Lett. 2022. V. 72. P. 128869. https://doi.org/10.1016/J.BMCL.2022.128869
- Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
Supplementary files
