Synthesis of triethylammonium salts of amidine derivatives of closo-borate anions [B10H10]2– and [B12H12]2– and investigation of their cytotoxic properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of amidine derivatives of closo-deca- and dodecaborate anions with triethylammonium cations were obtained in this work. The structure of the compounds was established by multinuclear NMR spectroscopy, ESI-mass spectrometry. Cytotoxicity was investigated for all obtained compounds by MTT method on 4 cell lines. It was shown that the nature of the cation does not affect the cytotoxicity of substituted closo-borates.

Full Text

Restricted Access

About the authors

M. N. Ryabchikova

National Research University Higher School of Economics

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 101000

A. V. Nelyubin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

I. N. Klyukin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

N. Yu. Karpechenko

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; Pirogov Russian National Research Medical University

Email: zhdanov@igic.ras.ru

Department of Medicinal Chemistry and Toxicology

Russian Federation, Moscow, 115522; Moscow, 117513

A. P. Zhdanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

K. Yu. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Druzina A.A., Grammatikova N.E., Zhidkova O.B. et al. // Molecules. 2022. V. 27. № 9. P. 2920. https://doi.org/10.3390/molecules27092920
  2. Różycka D., Leśnikowski Z.J., Olejniczak A.B. // J. Organomet. Chem. 2019. V. 881. P. 19. https://doi.org/10.1016/j.jorganchem.2018.11.037
  3. Vaňková E., Lokočová K., Maťátková O. et al. // J. Organomet. Chem. 2019. V. 899. P. 120891. https://doi.org/10.1016/j.jorganchem.2019.120891
  4. Sun Y., Zhang J., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 41. P. 10364. https://doi.org/10.1002/chem.201801602
  5. Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent. Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
  6. Laskova J., Kozlova A., Ananyev I. et al. // J. Organomet. Chem. 2017. V. 834. P. 64. https://doi.org/10.1016/j.jorganchem.2017.02.009
  7. Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
  8. Matveev E.Yu., Garaev T.M., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 670. https://doi.org/10.1134/S0036023623600533
  9. Seneviratne D.S., Saifi O., Mackeyev Y. et al. // Cells. 2023. V. 12. № 10. P. 1398. https://doi.org/10.3390/cells12101398
  10. Novopashina D.S., Vorobyeva M.A., Venyaminova A. // Front. Chem. 2021. V. 9. https://doi.org/10.3389/fchem.2021.619052
  11. Kaniowski D., Kulik K., Ebenryter-Olbińska K. et al. // Biomolecules. 2020. V. 10. № 5. P. 718. https://doi.org/10.3390/biom10050718
  12. Kanygin V., Zaboronok A., Taskaeva I. et al. // J. Fluoresc. 2021. V. 31. № 1. P. 73. https://doi.org/10.1007/s10895-020-02637-5
  13. Shakirova O.G., Lavrenova L.G., Bogomyakov A.S. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 786. https://doi.org/10.1134/S003602361507013X
  14. Shakirova O.G., Daletskii V.A., Lavrenova L.G. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 6. P. 650. https://doi.org/10.1134/S0036023613060211
  15. Fisher S.P., Tomich A.W., Lovera S.O. et al. // Chem. Rev. 2019. V. 119. № 14. P. 8262. https://doi.org/10.1021/acs.chemrev.8b00551
  16. Wang Z., Wang Z., Ma X. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 60. P. 30750. https://doi.org/10.1016/j.ijhydene.2021.06.196
  17. Wang Z., Liu Y., Zhang H. et al. // J. Colloid Interface Sci. 2020. V. 566. P. 135. https://doi.org/10.1016/j.jcis.2020.01.047
  18. Deng X., Liu X., Xia S. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2023. V. 677. P. 132352. https://doi.org/10.1016/J.COLSURFA.2023.132352
  19. Emin Kilic M., Jena P. // J. Phys. Chem. Lett. 2023. V. 14. № 39. P. 8697. https://doi.org/10.1021/acs.jpclett.3c02222
  20. Duchêne L., Kim D.H., Song Y.B. et al. // Energy Storage Mater. 2020. V. 26. № July 2019. P. 543. https://doi.org/10.1016/j.ensm.2019.11.027
  21. Gigante A., Duchêne L., Moury R. et al. // ChemSusChem. 2019. V. 12. № 21. P. 4832. https://doi.org/10.1002/cssc.201902152
  22. Deysher G., Chen Y.-T., Sayahpour B. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 42. P. 47706. https://doi.org/10.1021/acsami.2c12759
  23. Duchêne L., Remhof A., Hagemann H. et al. // Energy Storage Mater. 2020. V. 25. № August. P. 782. https://doi.org/10.1016/j.ensm.2019.08.032
  24. Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. V. 11. № 8. P. 977. https://doi.org/10.1039/b715363e
  25. Prikaznov A.V., Bragin V.I., Davydova M.N. et al. // Collect. Czech. Chem. Commun. 2007. V. 72. № 12. P. 1689. https://doi.org/10.1135/cccc20071689
  26. Ryabchikova M.N., Neumolotov N.K., Nelyubin A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 14. P. 1923. https://doi.org/10.1134/S0036023623603252
  27. Al-Joumhawy M.K., Chang J.C., Sabzi F. et al. // Molecules. 2023. V. 28. № 7. https://doi.org/10.3390/molecules28073245
  28. Kaszyński P., Ringstrand B. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
  29. Tokarz P., Kaszyński P., Domagała S. et al. // J. Organomet. Chem. 2015. V. 798. P. 70. https://doi.org/10.1016/j.jorganchem.2015.07.035
  30. Ali M.O., Lasseter J.C., Żurawiński R. et al. // Chem. Eur. J. 2019. V. 25. № 10. P. 2616. https://doi.org/10.1002/chem.201805392
  31. Järvinen J., Pulkkinen H., Rautio J. et al. // Pharmaceutics. 2023. V. 15. № 12. P. 2663. https://doi.org/10.3390/pharmaceutics15122663
  32. Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
  33. Nishimura K., Harrison S., Kawai K. et al. // Bioorg. Med. Chem. Lett. 2022. V. 72. P. 128869. https://doi.org/10.1016/J.BMCL.2022.128869
  34. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of amidine-closo-borates

Download (188KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».