Thermodynamic Properties of Lutetium Stannate Lu2Sn2O7 in the Temperature Range 0–1871 K

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Lutetium stannate with a pyrochlore structure was synthesized using solid state reaction route. The heat capacity of the polycrystalline Lu2Sn2O7 in the temperature range 7.99–1871 K was measured by adiabatic and differential scanning calorimetry methods. Entropy, enthalpy change, and derived Gibbs energy were calculated from the smoothed heat capacity data. The Gibbs free energy of Lutetium stannate from simple substances was estimated, using the ΔfS°(Т) values obtained in this work and the ΔfH°(Т) values from the literature. The temperature dependence of the cubic crystal lattice parameter and the value of the coefficient of thermal expansion in the temperature range 300–1273 K were determined by high-temperature X-ray diffraction.

Full Text

Restricted Access

About the authors

M. A. Ryumin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: ryumin@igic.ras.ru
Russian Federation, Moscow

A. V. Tyurin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Russian Federation, Moscow

A. V. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Russian Federation, Moscow

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Russian Federation, Moscow

K. S. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Russian Federation, Moscow

References

  1. Pruneda J.M., Artacho E. // Phys. Rev. B. 2005. V. 72. P. 085107. https://doi.org/10.1103/PhysRevB.72.085107
  2. Boujnah M., Chavira E. // Optic. Mater. 2020. V. 110. P. 110499. https://doi.org/10.1016/j.optmat.2020.110499
  3. Pirzada M., Grimes R.W., Minervini L. et al. // Solid State Ionics. 2001. V. 140. P. 201. https://doi.org/10.1016/S0167-2738(00)00836-5
  4. Lang M., Zhang F., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. P. 2951. https://doi.org/10.1016/j.nimb.2010.05. 016
  5. Wang J., Xu F., Wheatley R.J. et al. // Mater. Des. 2015. V. 85. P. 423. https://doi.org/10.1016/j.matdes.2015.07.022
  6. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  7. Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 68 P. 727. https://doi.org/10.1016/j.scriptamat.2013.01.010
  8. Joulia A., Vardelle M., Rossignol S. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2633. https://doi.org/10.1016/j.jeurceramsoc.2013.03.030
  9. Wang Y., Gao Bo, Wang Q. et al. // J. Mater. Sci. 2020. V. 55. P. 15405. https://doi.org/10.1007/s10853–020–05104–5
  10. Ashcroft A.T., Cheetham A.K., Green M.L.H. et al. // J. Chem. Soc., Chem. Commun. 1989. P. 1667. https://doi.org/10.1039/C39890001667
  11. Srivastava A.M. // Opt. Mater. 2009. V. 31. P. 881. https://doi.org/10.1016/j.optmat.2008.10.021
  12. Kennedy B.J., Hunter B.A., Howard C.J. // J. Solid State Chem. 1997. V. 130. P. 58. https://doi.org/10.1006/jssc.1997.7277
  13. Brisse F., Knop O. // Can. J. Chem. 1968. V. 46. № 6. P. 859. https://doi.org/10.1139/v68–148
  14. Vandenborre M.T., Husson E., Chatry J.P., Michel D. // J. Raman Spectrosc. 1983. V. 14. № 2. P. 63. https://doi.org/10.1002/jrs.1250140202
  15. Chen Z.J., Xiao H.Y., Zu X.T. et al. // Comput. Mater. Sci. 2008. V. 42 P. 653. https://doi.org/10.1016/j.commatsci.2007.09.01
  16. Whinfreyd C., Eckar O., Tauber A. // J. Am. Chem. Soc. 1960. V. 82. № 11. P. 2695. https://doi.org/10.1021/ja01496a010
  17. Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
  18. Zhang F., Chen M., Zhang Sh. et al. // CALPHAD. 2021. V. 72. P. 102248. https://doi.org/10.1016/j.calphad.2020.102248
  19. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
  20. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 60. № 12. С. 1668. https://doi.org/10.31857/S0044457 X2012020X
  21. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1615. https://doi.org/10.31857/S0044457X22100543
  22. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  23. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 5. С. 513. https://doi.org/10.7868/S0002337X17050050
  24. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техника эксперимента. 1985. Т. 6. С. 195.
  25. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. № 6. P. 623. https://doi.org/10.1006/jcht.1996.0173
  26. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac2006781112051.
  27. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. NBS. 1982. V. 87. № 2. P. 159. http://doi.org/10.6028/jres.087.012
  28. Merkushkin A.O., Aung T., Mo Z.E. // Glass Ceram. 2011. V. 67. № 11–12. P. 347. https://doi.org/10.1007/s10717–011–9295-y
  29. Whinfrey C.G., Tauber A. // J. Am. Chem. Soc. 1961. V. 83. № 3. P. 755.
  30. Lobenstein H.M., Zilber R., Zmora H. // Phys. Lett. 1970. V. 33A. P. 453. https://doi.org/10.1016/0375-9601 (70)90604-3
  31. Powell M., Sanjeewa L.D., McMillen C.D. et al. // Cryst. Growth Des. 2019. V. 19. P. 4920. https://doi.org/10.1021/acs.cgd.8b01889
  32. Гуревич В.М., Гавричев К.С., Горбунов В.Е. и др. // Геохимия. 2004. № 10. С. 1096.
  33. Zhang Y., Jung In-Ho. // CALPHAD. 2017. V. 58. P. 169. http://doi.org/10.1016/j.calphad.2017.07.001
  34. Leitner J., Voňka P., Sedmidubsky D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  35. Voskov A.L., Kutsenok I.B., Voronin G.F. // CALPHAD. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  36. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  37. Печковская К.И., Никифорова Г.Е., Тюрин А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 476. https://doi.org/10.31857/S0044457X 22040158
  38. Bissengaliyeva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/ j.jct.2021.106646
  39. Saha S., Singh S., Dkhil B. et al. // Phys. Rev. B. 2008. V. 78. P. 214102. https://doi.org/10.1103/PhysRevB.78.214102
  40. Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c
  41. Kowalski P.M. // Scripta Mater. 2020. V. 189 P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
  42. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  43. Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: 1965–1982.
  44. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. http:// doi.org/10.1063/1.4825256
  45. Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 69. P. 401. http://doi.org/10.1016/j.scriptamat.2013.05.030
  46. Zhixue Q., Chunlei W., Wei P. // Acta Mater. 2012. V. 60. P. 2939. https://doi.org/10.1016/j.actamat.2012.01.057

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary
Download (15KB)
3. Fig. 1. Microphotographs of lutetium stannate after annealing at 1773 K

Download (177KB)
4. Fig. 2. Diffractogram of Lu2Sn2O7

Download (59KB)
5. Fig. 3. EDX spectrum of stannate lutetium stannate

Download (83KB)
6. Fig. 4. Heat capacity of lutetium stannate: grey line - curve obtained in the present work; black squares - values obtained by addition of heat capacities of initial oxides (Neumann-Kopp rule); black line - values [23]. Dashed line in the tab - heat capacity of gadolinium stannate

Download (114KB)
7. Fig. 5. Temperature dependence of Gibbs energy of lutetium stannate formation from oxides

Download (43KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».