Synthesis of copper(II) oxide nanoparticles by anion-exchange resin precipitation and production of their stable hydrosols

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Copper (II) oxide nanoparticles are promising materials for applications in catalysis, biomedicine and photovoltaics. It is also possible to use them for the preparation of nanocomposites and hybrid nanoparticles. This work presents a new method for the synthesis of CuO nanoparticles, which allows their one-step preparation without washing and heating. The proposed anion-exchange deposition method is simple, fast and easily reproducible under normal laboratory conditions. It is shown that anion-exchange precipitation of copper in the presence of the polysaccharide dextran-40 from copper chloride and sulphate solutions produces well crystallised hydroxychloride Cu2Cl(OH)3 and hydroxysulphate Cu4(SO4)(OH)6, respectively, and from copper nitrate a weakly crystallised Cu(OH)2 phase. In the absence of polysaccharide, copper oxide nanoparticles are formed irrespective of the nature of the anion of the parent salt. The obtained materials were used to obtain hydrosols with high aggregation and sedimentation stability over a wide pH range (from 5 to 11). These sols are stable for more than 3 months at a concentration of 2 g/l (the average hydrodynamic diameter of the particles is 245 nm; the average ζ-potential is -31.1 mV). Based on the study of the optical and electronic properties of the obtained hydrosols, it was found that they could be of interest for photocatalysis and application in optoelectronic devices.

Full Text

Restricted Access

About the authors

A. Y. Pavlikov

Siberian Federal University

Author for correspondence.
Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041

S. V. Saikova

Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch of the Russian Academy of Sciences

Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036

A. S. Samoilo

Siberian Federal University

Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041

D. V. Karpov

Siberian Federal University; Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch of the Russian Academy of Sciences

Email: apavlikov98@mail.ru
Russian Federation, Krasnoyarsk, 660041; Akademgorodok, Krasnoyarsk, 660036

S. A. Novikova

Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch of the Russian Academy of Sciences

Email: apavlikov98@mail.ru
Russian Federation, Akademgorodok, Krasnoyarsk, 660036

References

  1. Poreddy R., Engelbrekt C., Riisager A. // Catal. Sci. Technol. 2015. V. 5. P. 2467. https://doi.org/10.1039/C4CY01622J
  2. Aroob S., Carabineiro S.A.C., Taj M.B. et al. // Catalysts. 2023. V. 13. P. 502. https://doi.org/10.3390/catal13030502
  3. Grigore M.E., Biscu E.R., Holban A.M. et al. // Pharmaceuticals. 2016. V. 9. P. 75. https://doi.org/10.3390/ph9040075
  4. Lim Y.-F., Choi J.J., Hanrath T. // J. Nanomater. 2012. V. 2012. P. 4. https://doi.org/10.1155/2012/393160
  5. Мокрушин А.С., Горбань Ю.М. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 557.
  6. Katowah D.F., Saleh S.M., Alqarni S.A. et al. // Sci. Rep. 2021. V. 11. P. 5056. https://doi.org/10.1038/s41598-021-84540-y
  7. Kulkarni R., Kunwar S., Mandavkar R. et al. // Nanomaterials. 2020. V. 10. P. 2034. https://doi.org/10.3390/nano10102034
  8. Ghosh A., Miah M., Bera A. et al. // J. Alloys Compd. 2021. V. 862. P. 158549. https://doi.org/10.1016/j.jallcom.2020.158549
  9. Kano E., Kvashnin D.G., Sakai S. et al. // Nanoscale. 2017. V. 9. № 11. P. 3980. https://doi.org/10.1039/c6nr06874j
  10. Coogan Á., Hughes L., Pursell-Milton F. et al. // J. Phys. Chem. C. 2022. V. 126. № 44. P. 18980. https://doi.org/10.1021/acs.jpcc.2c06540
  11. Siddiqui H., Parra M.R., Pandey P. et al. // J. Sci-Adv. Mater. Dev. 2020. V. 5. P. 104. https://doi.org/10.1016/j.jsamd.2020.01.004
  12. Kayani Z.N., Umer M., Riaz S. // J. Electron. Mater. 2015. V. 44. P. 3704. https://doi.org/10.1007/s11664-015-3867-5
  13. Arunkumar B., Johnson Jeyakumar S., Jothibas M. // Optik. 2019. V. 183. P. 698. https://doi.org/10.1016/j.ijleo.2019.02.046
  14. Wongpisutpaisan N., Charoonsuk P., Vittayakorn N., Pecharapa W. // Energy Procedia. 2011. V. 9. P. 404. https://doi.org/10.1016/j.egypro.2011.09.044
  15. Silva N., Ramírez S., Díaz I. et al. // Materials. 2019. V. 12. P. 804. https://doi.org/10.3390/ma12050804
  16. Claros M., Gràcia I., Figueras E., Vallejos S. // Chemosensors. 2022. V. 10. P. 353. https://doi.org/10.3390/chemosensors10090353
  17. Zhu J., Li D., Chen H. et al. // Mater. Lett. 2004. V. 58. P. 3324. https://doi.org/10.1016/j.matlet.2004.06.031
  18. Rujun W., Zhenye M., Zhenggui G., Yan Y. // J. Alloys Compd. 2010. V. 504. P. 45. https://doi.org/10.1016/j.jallcom.2010.05.062
  19. Phiwdang K., Suphankij S., Mekprasart W., Pecharapa W. // Energy Procedia. 2013. V. 34. P. 740. https://doi.org/10.1016/j.egypro.2013.06.808
  20. Вулих А.И. Ионный обмен. М.: Химия, 1973. 232 с.
  21. Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск, 2018. 198 с.
  22. Сайкова С.В., Трофимова Т.В., Павликов А.Ю., Самойло А.С. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 287.
  23. El-Nahhal I.M., Elmanama A.A., Amara N. et al. // Mater. Chem. Phys. 2018. V. 215. P. 221. https://doi.org/10.1016/j.matchemphys.2018.05.012
  24. Iqbal Z., Siddiqui V.U., Alam M. et al. // AIP Conf. Proc. 2020. V. 2276. P. 020010. https://doi.org/10.1063/5.0025688
  25. Blinov A.V., Gvozdenko А.А., Yasnaya М.А. et al. // Her. Bauman Moscow State Tech. Univ. Ser. Nat. Sci. 2020. V. 3. P. 56. https://doi.org/10.18698/1812-3368-2020-3-56-70
  26. Aureen Albert A., Harris Samuel D.G., Parthasarathy V. et al. // Chem. Eng. Commun. 2019. V. 207. P. 319. https://doi.org/10.1080/00986445.2019.1588731
  27. El Sayed A.M., El-Gamal S., Morsi W.M. et al. // J. Mater. Sci. 2015. V. 50. P. 4717. https://doi.org/10.1007/s10853-015-9023-z
  28. Казимирова К.О., Штыков С.Н. // Изв. Сарат. ун-та. Нов. сер. Серия: Химия. Биология. Экология. 2018. Т. 18. № 2. С. 126. https://doi.org/10.18500/1816-9775-2018-18-2-126-133
  29. Arena A., Scandurra G., Ciofi C. // Sensors. 2017. V. 17. P. 2198. https://doi.org/10.3390/s17102198
  30. Mikhlin Y.L., Vishnyakova E.A., Romanchenko A.S. et al. // Appl. Surf. Sci. 2014. V. 297. P. 75. https://doi.org/10.1016/j.apsusc.2014.01.081
  31. Vorobyev S., Vishnyakova E., Likhatski M. et al. // Nanomaterials. 2019. V. 9. P. 1525. https://doi.org/10.3390/nano9111525
  32. Карпов Д.В. // Металлургия цветных, редких и благородных металлов. 2022. С. 119.
  33. Карпов Д.В., Воробьев С.А., Антипова Ю.В. и др. // Химическая наука и образование Красноярья. 2022. С. 37
  34. Mudunkotuwa I.A., Grassian V.H. // J. Am. Chem. Soc. 2010. V. 132. P. 14986. https://doi.org/10.1021/ja106091q
  35. Field T.B., McCourt J.L., McBryde W.A.E. // Can. J. Chem. 1974. V. 52. P. 3119. https://doi.org/10.1139/v74-458
  36. Dheyab M.A., Aziz A.A., Jameel M.S. et al. // Sci. Rep. 2020. V. 10. P. 10793. https://doi.org/10.1038/s41598-020-67869-8
  37. Goodarzi A., Sahoo Y., Swihart M.T. et al. // MRS Online Proceedings Library. 2003. V. 789. P. 23. https://doi.org/10.1557/PROC-789-N6.6
  38. Saikova S., Pavlikov A., Trofimova T. et al. // Metals. 2020. V. 11. № 5. P. 705. https://doi.org/10.3390/met11050705
  39. Saikova S., Pavlikov A., Karpov D. et al. // Materials. 2023. V. 16. P. 2318. https://doi.org/10.3390/ma16062318
  40. Васильев В.П., Золоторёв Е.К., Капустинский А.Ф. // Журн. физ. химии. 1960. Т. 34. № 8. С. 1761.
  41. Сайкова С.В., Пашков Г.Л., Пантелеева М.В. и др. // Журнал Сибирского федерального университета. Химия. 2011. Т. 4. № 4. С. 329.
  42. Pashkov G.L., Saikova S.V., Panteleeva M.V. et al. // Theor. Found. Chem. Eng. 2014. V. 48. P. 671. https://doi.org/10.1134/S0040579514050066
  43. Saikova S.V., Panteleeva M.V., Nikolaeva R.B. et al. // Russ. J. Appl. Chem. 2002. V. 75. P. 1787. https://doi.org/10.1023/A:1022249817628
  44. Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. P. 259. https://doi.org/10.1016/0079-6786(88)90005-2
  45. Norkus E., Vaičiūnien J., Vuorinen T. et al. // Carbohydrate Polymers. 2002. V. 50. P. 159. https://doi.org/10.1016/s0144-8617(02)00056-5
  46. Cudennec Y., Lecerf A. // Solid State Sci. 2003. V. 5. P. 1471. https://doi.org/10.1016/j.solidstatesciences.2003.09.009
  47. Singh D.P., Ojha A.K., Srivastava O.N. // J. Mater. Chem. C. 2009. V. 113. P. 3409. https://doi.org/10.1021/jp804832g
  48. Vaseem M., Hong A.R., Kim R.T. et al. // J. Mater. Chem. C. 2013. V. 1. P. 2112. https://doi.org/10.1039/C3TC00869J
  49. Nikolić G.S., Cakić M.D. // New Analytical Approaches and FTIR Strategies. 2011. https://doi.org/10.5772/16133
  50. Savic I., Nikolic G., Cakic M. // Acta Chromatogr. 2010. V. 22. P. 375. https://doi.org/10.1556/AChrom.22.2010.3.3
  51. Evsevskaya N., Pikurova E., Saikova S.V. et al. // ACS Omega. 2020. V. 5. P. 4542. https://doi.org/10.1021/acsomega.9b03877
  52. Сайкова С.В., Киршнева Е.А., Пантелеева М.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1013.
  53. Сайкова С.В., Пашков Г.Л. Пантелеева М.В. и др. // Журнал Сибирского федерального университета. Химия. 2010. Т. 3. № 1. С. 27.
  54. Shinohara S., Eom N., The E.-J. et al. // Langmuir. 2018. V. 34. P. 2595. https://doi.org/10.1021/acs.langmuir.7b03116
  55. Kosmulski M. // Adv. Colloid Interface Sci. 2016. V. 238. P. 1. https://doi.org/10.1016/j.cis.2016.10.005
  56. Parks G.A. // Chem. Rev. 1965. V. 65. P. 177. https://doi.org/10.1021/cr60234a002
  57. Drozdov A.S., Ivanovski V., Avnir D. // J. Colloid Interface Sci. 2016. V. 468. P. 307. https://doi.org/10.1016/j.jcis.2016.01.061
  58. Xie Y., Carbone L., Nobile C. et al. // ACS Nano. 2013. V. 7. P. 7352. https://doi.org/10.1021/nn403035s
  59. Montgomery M.J., Sugak N., Yang Ke R. et al. // Nanoscale. 2020. V. 12. P. 14549. https://doi.org/10.1039/D0NR02208J
  60. Wang Y., Lany S., Ghanbaja J. et al. // Phys. Rev. B. 2016. V. 94. P. 245418. https://doi.org/10.1103/PhysRevB.94.245418
  61. Chen Z., Jaramillo T. // Department of Chemical Engineering, Stanford University Edited by Bruce Brunschwig. 2017.
  62. Василевский А.М., Коноплев Г.А., Панов М.Ф. // Оптико-физические методы исследований: Методические указания к лабораторным работам. СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 2011. 56 с.
  63. Rydosz A., Kollbek K., Kim-Ngan NT.H. et al. // J. Mater. Sci. — Mater. Electron. 2020. V. 31. P. 11624. https://doi.org/10.1007/s10854-020-03713-z
  64. Hamad H., Elsenety M.M., Sadik W. et al. // Sci. Rep. 2022. V. 12. P. 2217. https://doi.org/10.1038/s41598-022-05981-7
  65. Ahmad F., Agusta M.K., Dipojono H.K. // J. Phys: Conference Series. 2016. V. 739. P. 012040. https://doi.org/10.1088/1742-6596/739/1/012040
  66. Jamal M., Shahriyar Nishat S., Sharif A. // Chem. Phys. 2021. V. 545. P. 111160. https://doi.org/10.1016/j.chemphys.2021.111160
  67. Sakib A.A.M., Masum S.M., Hoinkis J. et al. // J. Compos. Sci. 2019. V. 3. P. 91. https://doi.org/10.3390/jcs3030091
  68. Zhang X., Yang Y., Que W., Du Y. // RSC Adv. 2016. V. 6. P. 81607. https://doi.org/10.1039/C6RA12281G
  69. Ahmad I., Shukrullah S., Yasin M.N. et al. // Int. J. Hydrogen Energy. 2023. V. 48. P. 12683. https://doi.org/10.1016/j.ijhydene.2022.11.289

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the degree of anion exchange deposition of Si2+ in the presence of dextran over time (a) and X–ray images of the obtained 1D-3D products (b).

Download (112KB)
3. Fig. 2. Thermograms (TGA, DTA curves) of samples 1D (a), 2D (b), 3D (c) obtained during anion exchange deposition of Cu2+ in the presence of dextran.

Download (227KB)
4. Fig. 3. Dependence of the optical density of gases released during thermal analysis on time for samples 1D (a), 2D (b), 3D (c) (Table. 1) obtained during the anion exchange deposition of Cu2+ in the presence of dextran.

Download (279KB)
5. Fig. 4. X-ray image of the sample obtained after calcination of the 3D sample for 60 minutes at a temperature of 350 °C.

Download (52KB)
6. Fig. 5. The change in the degree of anion exchange deposition of Si2+ in the absence of polysaccharide over time (a) and the X-ray images of the obtained products 1-3 (b).

Download (114KB)
7. Fig. 6. Micrographs (a, b) and electron microdifraction (c – experimentally obtained pattern of electron microdifraction, d – simulation of a powder electronogram) for SiO particles obtained after anion exchange deposition (Sample 3, Table 1).

Download (292KB)
8. Fig. 7. IR-Fourier spectra of samples obtained during anion exchange deposition without the use of polysaccharide (samples 1-3, Table. 2), and sample 4 obtained after processing the 3D sample (Table 1) at 350°C.

Download (89KB)
9. Fig. 8. Dependences of the hydrodynamic diameter (a) and ζ-potential (b) of CuO nanoparticles (Sample 3, Table. 2), stabilized with monosubstituted sodium citrate, depending on the pH value.

Download (88KB)
10. Fig. 9. Optical absorption spectrum of CuO nanoparticle hydrosol (a) and Tautz graphs (b, c) for determining the band gap.

Download (118KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies