Эпоксидный метод синтеза двухкомпонентных аэрогелей Al2O3–TiO2 и их УФ-защитные характеристики

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Предложен новый метод синтеза аэрогелей на основе Al2O3–TiO2, основанный на гидролизе смешанных растворов тетрахлорида титана и нитрата алюминия в присутствии оксида пропилена с последующей сверхкритической сушкой образующихся гелей. Полученные аэрогели характеризуются высокой удельной поверхностью (140–500 м2/г) и высокой удельной пористостью (1.7–2.7 см3/г). Термическая обработка аэрогелей Al2O3–TiO2 при температурах до 600°С не приводит к кристаллизации диоксида титана, тогда как формирование кристаллического анатаза в аэрогелях на основе индивидуального TiO2 наблюдается уже при температуре 450°С. С использованием стандартизованной методики ISO 24443-2016 определены значения солнцезащитного фактора SPF полученных материалов, которые оказались сопоставимы с характеристиками коммерческого неорганического УФ-фильтра на основе TiO2 (Kronos 1171). При этом фотокаталитическая активность аэрогелей Al2O3–TiO2 оказалась ниже аналогичной характеристики коммерческого УФ-фильтра на основе диоксида титана более чем в 120 раз. Полученные результаты демонстрируют перспективность использования аэрогелей Al2O3–TiO2 в качестве компонента солнцезащитных средств.

作者简介

Л. Полевой

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31

И. Колесник

Московский государственный университет им. М.В. Ломоносова

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинские горы, 1

Г. Копица

Институт химии силикатов им. И.В. Гребенщикова РАН; Петербургский институт ядерной физики им. Б.П. Константинова
НИЦ “Курчатовский институт”

Email: a.baranchikov@yandex.ru
Россия, 199034, Санкт-Петербург, наб. Адмирала Макарова, 2; Россия, 188300, Гатчина, мкр. Орлова роща, 1

М. Голикова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Н. Цвигун

Институт кристаллографии им. А.В. Шубникова,
ФНИЦ “Кристаллография и фотоника” РАН

Email: a.baranchikov@yandex.ru
Россия, 119333, Москва, Ленинский пр-т, 59

Т. Хамова

Институт химии силикатов им. И.В. Гребенщикова РАН

Email: a.baranchikov@yandex.ru
Россия, 199034, Санкт-Петербург, наб. Адмирала Макарова, 2

А. Сергеева

Институт вулканологии и сейсмологии ДВО РАН

Email: a.baranchikov@yandex.ru
Россия, 683006, Петропавловск-Камчатский, бул. Пийпа, 9

Ю. Горшкова

Объединенный институт ядерных исследований

Email: a.baranchikov@yandex.ru
Россия, 141980, Московская область, Дубна, ул. Жолио-Кюри, 6

Д. Санджиева

Российский государственный университет нефти и газа (НИУ)
им. И.М. Губкина; Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 65/1; Россия, 119991, Москва, Ленинский пр-т, 29

Б. Убушаева

Российский государственный университет нефти и газа (НИУ)
им. И.М. Губкина; Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 65/1; Россия, 119991, Москва, Ленинский пр-т, 29

А. Баранчиков

Институт общей и неорганической химии им. Н.С. Курнакова РАН

编辑信件的主要联系方式.
Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31

В. Иванов

Институт общей и неорганической химии им. Н.С. Курнакова РАН; Московский государственный университет им. М.В. Ломоносова

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119991, Москва, Ленинские горы, 1

参考

  1. Jin S.-G., Padron F., Pfeifer G.P. // ACS Omega. 2022. V. 7. № 37. P. 32936. https://doi.org/10.1021/acsomega.2c04424
  2. Guerra K.C., Zafar N., Crane J.S. Skin Cancer Prevention // StatPearls. 2023. Treasure Island: StatPearls Publishing, 2023. https://pubmed.ncbi.nlm.nih.gov/ 30137812/
  3. Nohynek G.J., Schaefer H. // Regul. Toxicol. Pharmacol. 2001. V. 33. № 3. P. 285. https://doi.org/10.1006/rtph.2001.1476
  4. Gonzalez H., Tarras-Wahlberg N., Strömdahl B. et al. // BMC Dermatol. 2007. V. 7. № 1. P. 1. https://doi.org/10.1186/1471-5945-7-1
  5. Gabard B. Sunscreens // Cosmetics. Berlin: Springer, 1999. P. 116. https://doi.org/10.1007/978-3-642-59869-2_9
  6. Bryden A.M., Moseley H., Ibbotson S.H. et al. // Br. J. Dermatol. 2006. V. 155. № 4. P. 737. https://doi.org/10.1111/j.1365-2133.2006.07458.x
  7. Victor F.C., Cohen D.E., Soter N.A. // J. Am. Acad. Dermatol. 2010. V. 62. № 4. P. 605. https://doi.org/10.1016/j.jaad.2009.06.084
  8. Schneider S.L., Lim H.W. // Photodermatol. Photoimmunol. Photomed. 2019. V. 35. № 6. P. 442. https://doi.org/10.1111/phpp.12439
  9. Serpone N., Dondi D., Albini A. // Inorg. Chim. Acta. 2007. V. 360. № 3. P. 794. https://doi.org/10.1016/j.ica.2005.12.057
  10. Morsella M., D’Alessandro N., Lanterna A.E. et al. // ACS Omega. 2016. V. 1. № 3. P. 464. https://doi.org/10.1021/acsomega.6b00177
  11. Nakata K., Fujishima A. // J. Photochem. Photobiol., C: Photochem. Rev. 2012. V. 13. № 3. P. 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  12. Horie M., Sugino S., Kato H. et al. // Toxicol. Mech. Methods. 2016. V. 26. № 4. P. 284. https://doi.org/10.1080/15376516.2016.1175530
  13. Sun S., Song P., Cui J. et al. // Catal. Sci. Technol. 2019. V. 9. № 16. P. 4198. https://doi.org/10.1039/C9CY01020C
  14. Jang E., Sridharan K., Park Y.M. et al. // Chem. A Eur. J. 2016. V. 22. № 34. P. 12022. https://doi.org/10.1002/chem.201600815
  15. Becker L.C., Boyer I., Bergfeld W.F. et al. // Int. J. Toxicol. 2016. V. 35. № 3. P. 16S. https://doi.org/10.1177/1091581816677948
  16. Cassin G., Diridollou S., Flament F. et al. // Int. J. Cosmet. Sci. 2018. V. 40. № 1. P. 58. https://doi.org/10.1111/ics.12433
  17. Yorov K.E., Kolesnik I.V., Romanova I.P. et al. // J. Supercrit. Fluids. 2021. V. 169. P. 105099. https://doi.org/10.1016/j.supflu.2020.105099
  18. Pierre A.C., Pajonk G.M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
  19. Hüsing N., Schubert U. // Angew. Chem. Int. Ed. 1998. V. 37. № 1–2. P. 22. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  20. Feinle A., Elsaesser M.S., Hüsing N. // Chem. Soc. Rev. 2016. V. 45. № 12. P. 3377. https://doi.org/10.1039/C5CS00710K
  21. Yorov K.E., Baranchikov A.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 2. P. 89. https://doi.org/10.1134/S1070328422020014
  22. Singh P., Nanda A. // Int. J. Cosmet. Sci. 2014. V. 36. № 3. P. 273. https://doi.org/10.1111/ics.12124
  23. Chen L., Zhu J., Liu Y.-M. et al. // J. Mol. Catal. A: Chem. 2006. V. 255. № 1–2. P. 260. https://doi.org/10.1016/j.molcata.2006.04.043
  24. Moussaoui R., Elghniji K., ben Mosbah M. et al. // J. Saudi Chem. Soc. 2017. V. 21. № 6. P. 751. https://doi.org/10.1016/j.jscs.2017.04.001
  25. Donėlienė J., Fataraitė-Urbonienė E., Danchova N. et al. // Gels. 2022. V. 8. № 7. P. 422. https://doi.org/10.3390/gels8070422
  26. Gaweł B., Gaweł K., Øye G. // Materials. 2010. V. 3. № 4. P. 2815. https://doi.org/10.3390/ma3042815
  27. Lermontov S.A., Straumal E.A., Mazilkin A.A. et al. // Mater. Lett. 2017. V. 215. P. 19. https://doi.org/10.1016/j.matlet.2017.12.031
  28. Yorov K.E., Sipyagina N.A., Malkova A.N. et al. // Inorg. Mater. 2016. V. 52. № 2. P. 163. https://doi.org/10.1134/S0020168516020035
  29. Yorov K.E., Sipyagina N.A., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 11. P. 1339. https://doi.org/10.1134/S0036023616110048
  30. Baranchikov A.E., Kopitsa G.P., Yorov K.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 874. https://doi.org/10.1134/S003602362106005X
  31. Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. № 4. P. 259. https://doi.org/10.1016/0079-6786(88)90005-2
  32. Gash A.E., Tillotson T.M., Satcher Jr J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093(01)00427-6
  33. Itoh H., Tabata T., Kokitsu M. et al. // J. Ceram. Soc. Jpn. 1993. V. 101. № 1177. P. 1081. https://doi.org/10.2109/jcersj.101.1081
  34. Wei T.-Y., Chen C.-H., Chang K.-H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
  35. Baumann T.F., Gash A.E., Chinn S.C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
  36. Straumal E.A., Ivanov V.K., Malkova A.N. et al. // J. Sol-Gel Sci. Technol. 2017. V. 84. № 3. P. 377. https://doi.org/10.1007/s10971-017-4429-5
  37. Lermontov S.A., Yurkova L.L., Straumal E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 303. https://doi.org/10.1134/S0036023618030142
  38. Yorov K.E., Yapryntsev A.D., Baranchikov A.E. et al. // J. Sol-Gel Sci. Technol. 2018. V. 86. № 2. P. 400. https://doi.org/10.1007/s10971-018-4647-5
  39. Kameneva S.V., Yorov K.E., Kamilov R.K. et al. // J. Sol-Gel Sci. Technol. 2023. V. 107. P. 586.https://doi.org/10.1007/s10971-023-06149-z
  40. Rouquerol J., Llewellyn P., Rouquerol F. // Stud. Surf. Sci. Catal. 2007. V. 160. P. 49. https://doi.org/10.1016/S0167-2991(07)80008-5
  41. Фиалков Ю.Я. Растворитель как средство управления химическим процессом. М., 1990.
  42. Kuzin E.N., Krutchinina N.E. // Inorg. Mater. 2019. V. 55. № 8. P. 834. https://doi.org/10.1134/S0020168519080065
  43. Wang T.-H., Navarrete-López A.M., Li S. et al. // J. Phys. Chem. A 2010. V. 114. № 28. P. 7561. https://doi.org/10.1021/jp102020h
  44. Archambault J., Rivest R. // Can. J. Chem. 1958. V. 36. № 11. P. 1461. https://doi.org/10.1139/v58-216
  45. Cottineau T., Richard-Plouet M., Rouet A. et al. // Chem. Mater. 2008. V. 20. № 4. P. 1421. https://doi.org/10.1021/cm702531q
  46. Emons H.-H., Janneck E., Pollmer K. // Z. Anorg. Allg. Chem. 1984. V. 511. № 4. P. 135. https://doi.org/10.1002/zaac.19845110415
  47. Suzuki H., Ishiguro S.-I. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. 54. № 5. P. 586. https://doi.org/10.1107/S0108270197018817
  48. Titanium(IV), Zirconium, Hafnium and Thorium // Hydrolys. Met. Ions. Weinheim: Wiley, 2016. P. 433. https://doi.org/10.1002/9783527656189.ch10
  49. Aluminium, Gallium, Indium and Thallium // Hydrolys. Met. Ions. Hydrolys. Met. Ions, Weinheim: Wiley, 2016. P. 757. https://doi.org/10.1002/9783527656189.ch13
  50. Gash A.E., Tillotson T.M., Satcher J.H. et al. // Chem. Mater. 2001. V. 13. № 3. P. 999. https://doi.org/10.1021/cm0007611
  51. Du X., Wang Y., Su X. et al. // Powder Technol. 2009. V. 192. № 1. P. 40. https://doi.org/10.1016/j.powtec.2008.11.008
  52. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  53. Gao M., Liu B., Zhao P. et al. // J. Sol-Gel Sci. Technol. 2019. V. 91. № 3. P. 514. https://doi.org/10.1007/s10971-019-05057-5
  54. Guinier A., Fournet G. Small-Angle X-Ray Scattering. N.Y.: John Wiley & Sons Inc., 1955. https://doi.org/10.1002/pol.1956.120199326
  55. Teixeira J. Experimental Methods for Studying Fractal Aggregates // Growth Form. Dordrecht: Springer, 1986. P. 145. https://doi.org/10.1007/978-94-009-5165-5_9
  56. Kim D., Jung J., Ihm J. // Nanomaterials. 2018. V. 8. № 6. P. 375. https://doi.org/10.3390/nano8060375
  57. Keysar S., De Hazan Y., Cohen Y. et al. // J. Mater. Res. 1997. V. 12. № 2. P. 430. https://doi.org/10.1557/JMR.1997.0063
  58. Meng F., Schlup J.R., Fan L.T. // Chem. Mater. 1997. V. 9. № 11. P. 2459. https://doi.org/10.1021/cm9700662
  59. Chane-Ching J.-Y., Klein L.C // J. Am. Ceram. Soc. 1988. V. 71. № 1. P. 86. https://doi.org/10.1111/j.1151-2916.1988.tb05765.x
  60. Catauro M., Tranquillo E., Dal Poggetto G. et al. // Materials. 2018. V. 11. № 12. https://doi.org/10.3390/ma11122364
  61. Diko M. // Acta Geodyn. Geomater. 2015. P. 149. https://doi.org/10.13168/AGG.2015.0052
  62. Feng G., Jiang F., Jiang W. et al. // Ceram. Int. 2019. V. 45. № 15. P. 18704. https://doi.org/10.1016/j.ceramint.2019.06.096
  63. Kirillova S.A., Almjashev V.I., Gusarov V. V. // Russ. J. Inorg. Chem. 2011. V. 56. № 9. P. 1464. https://doi.org/10.1134/S0036023611090117
  64. Dransfield G.P. // Radiat. Prot. Dosimetry. 2000. V. 91. № 1. P. 271. https://doi.org/10.1093/oxfordjournals.rpd.a033216
  65. Kim M.G., Kang J.M., Lee J.E. et al. // ACS Omega. 2021. V. 6. № 16. P. 10668. https://doi.org/10.1021/acsomega.1c00043
  66. Nishizawa H., Aoki Y. // J. Solid State Chem. 1985. V. 56. № 2. P. 158. https://doi.org/10.1016/0022-4596(85)90052-0
  67. Bachina A.K., Almjasheva O.V., Popkov V.I. et al. // J. Cryst. Growth 2021. V. 576. P. 126371. https://doi.org/10.1016/j.jcrysgro.2021.126371
  68. Almjasheva O.V., Lomanova N.A., Popkov V.I. et al. // Nanosyst. Physics, Chem. Math. 2019. V. 10. № 4. P. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437
  69. Lin H., Li L., Zhao M. et al. // J. Am. Chem. Soc. 2012. V. 134. № 20. P. 8328. https://doi.org/10.1021/ja3014049
  70. Hammouda B. // J. Appl. Crystallogr. 2010. V. 43. № 4. P. 716. https://doi.org/10.1107/S0021889810015773
  71. Schmidt P.W., Avnir D., Levy D. et al. // J. Chem. Phys. 1991. V. 94. № 2. P. 1474. https://doi.org/10.1063/1.460006
  72. Pogorelov V., Doroshenko I., Pitsevich G. et al. // J. Mol. Liq. 2017. V. 235. P. 7. https://doi.org/10.1016/j.molliq.2016.12.037
  73. Roscoe J.M., Abbatt J.P.D. // J. Phys. Chem. A. 2005. V. 109. № 40. P. 9028. https://doi.org/10.1021/jp050766r
  74. Thomas K., Hoggan P.E., Mariey L. et al. // Catal. Lett. 1997. V. 46. № 1/2. P. 77. https://doi.org/10.1023/A:1019017123596
  75. Hanaor D.A.H., Sorrell C.C. // J. Mater. Sci. 2011. V. 46. № 4. P. 855. https://doi.org/10.1007/s10853-010-5113-0
  76. Akkaya Arier U.O., Tepehan F.Z. // Compos. Part B Eng. 2014. V. 58. P. 147. https://doi.org/10.1016/j.compositesb.2013.10.023
  77. Hanini F., Bouabellou A., Bouachiba Y. et al. // IOSR J. Eng. 2013. V. 3. № 11. P. 21. https://doi.org/10.9790/3021-031112128
  78. Riaz S., Sajid-ur-Rehman, Abutalib M. et al. // J. Electron. Mater. 2016. V. 45. № 10. P. 5185. https://doi.org/10.1007/s11664-016-4754-4
  79. Filatova E.O., Konashuk A.S. // J. Phys. Chem. C. 2015. V. 119. № 35. P. 20755. https://doi.org/10.1021/acs.jpcc.5b06843
  80. Prange M.P., Zhang X., Ilton E.S. et al. // J. Chem. Phys. 2018. V. 149. № 2. P. 024502. https://doi.org/10.1063/1.5037104
  81. Tzompantzi F., Piña Y., Mantilla A. et al. // Catal. Today. 2014. V. 220–222. P. 49. https://doi.org/10.1016/j.cattod.2013.10.027
  82. Carp O., Huisman C.L., Reller A. // Prog. Solid State Chem. 2004. V. 32. № 1–2. P. 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

补充文件

附件文件
动作
1. JATS XML
2.

下载 (128KB)
3.

下载 (108KB)
4.

下载 (510KB)
5.

下载 (155KB)
6.

下载 (65KB)
7.

下载 (1MB)
8.

下载 (101KB)
9.

下载 (356KB)
10.

下载 (118KB)
11.

下载 (347KB)
12.

下载 (79KB)

版权所有 © Л.А. Полевой, И.В. Колесник, Г.П. Копица, М.В. Голикова, Н.В. Цвигун, Т.В. Хамова, А.В. Сергеева, Ю.Е. Горшкова, Д.А. Санджиева, Б.В. Убушаева, А.Е. Баранчиков, В.К. Иванов, 2023

##common.cookie##