Spatial Computer Model of the UCl3–NaCl–MgCl2–PuCl3 Isobaric Phase Diagram

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A four-dimensional (4D, in concentration–temperature coordinates) computer model of the isobaric phase diagram of uranium, sodium, magnesium, and plutonium chlorides, as well as four three-dimensional (3D) computer models of the phase diagrams of the ternary systems forming it, has been constructed. The technology of assembling a 4D model of 46 hypersurfaces and 17 phase regions was used in the design. The obtained 4D model of the UCl3–NaCl–MgCl2–PuCl3 phase diagram makes it possible to visualize a four-dimensional object as a whole (with all its hypersurfaces and phase regions) by any arbitrarily given 2D and 3D sections, as well as it is able to reproduce published (experimental or thermodynamically calculated) 2D sections. The scope of application of the results of the work is the development of materials for fuel components of fourth-generation molten salt reactors and pyrochemical recycling of spent fuel rods. For the first time, a comprehensive, complete description of phase diagrams composed of uranium, plutonium, sodium, and magnesium chlorides has been obtained.

Sobre autores

V. Vorob’eva

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

A. Zelenaya

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

V. Lutsyk

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

M. Lamueva

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

Bibliografia

  1. Yin H., Wu S., Wang X. et al // J. Fluor. Chem. 2019. V. 217. P. 90. https://doi.org/10.1016/j.jfluchem.2018.09.008
  2. Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 250. https://doi.org/10.31857/S0044457X21020070
  3. Mourogov A., Bokov P.M. // Energy Convers. Manage. 2006. V. 47. P. 2761. https://doi.org/10.1016/j.enconman.2006.02.013
  4. Pelton A.D., Chartrand P. // Metall. Mater. Trans. A. 2001. V. 32A. P. 1361. https://doi.org/10.1007/s11661-001-0227-2
  5. Trnovcova V., Garashina L.S., Skubla A. et al // Solid State Ionics. 2003. V. 157. P. 195. https://doi.org/10.1016/S0167-2738(02)00209-6
  6. Федоров П.П., Бучинская И.И., Бондарева О.С. и др. // Журн. неорган. химии. 2000. Т. 45. № 6. С. 1054.
  7. Beneš O., Konings R.J.M. // J. Nucl. Mater. 2008. V. 375. P. 202. https://doi.org/10.1016/j.jnucmat.2008.01.007
  8. Beneš O. Thermodynamics of Molten Salts for Nuclear Applications. PhD, Diss. Prague, Chech Rep. 2008. 205 p.
  9. Bulavin L., Plevachuk Yu., Sklyarchuk V. et al. // J. Nucl. Mater. 2013. V. 433. P. 329. https://doi.org/10.1016/j.jnucmat.2012.08.045
  10. Yin H., Wu X., Ling C. et al. // CALPHAD. 2022. V. 77. 102427. https://doi.org/10.1016/j.calphad.2022.102427
  11. Yin H., Lin J., Hu B. et al. // CALPHAD. 2020. V. 70. 101783. https://doi.org/10.1016/j.calphad.2020.101783
  12. Yingling J.A., Schorne-Pinto J., Aziziha M. et al. // J. Chem. Thermodyn. 2023. V. 179. 106974. https://doi.org/10.1016/j.jct.2022.106974
  13. Beneš O., van der Meer J.P.M., Konings R.J.M. // CALPHAD. 2007. V. 31. P. 209. https://doi.org/10.1016/j.calphad.2006.12.004
  14. Beneš O., Konings R.J.M. // J. Nucl. Mater. 2008. V. 377. P. 449. https://doi.org/10.1016/j.jnucmat.2008.04.004
  15. Beneš O., Konings R.J.M. // CALPHAD. 2008. V. 32. P. 121. https://doi.org/10.1016/j.calphad.2007.07.006
  16. van der Meer J.P.M., Konings R.J.M., Oonk H.A.J. // J. Nucl. Mater. 2006. V. 357. P. 48. https://doi.org/10.1016/j.jnucmat.2006.05.042
  17. Савчук Р.Н., Файдюк Н.В., Омельчук А.А. и др. // Журн. неорган. химии. 2014. Т. 59. № 6. С. 780. https://doi.org/10.7868/S0044457X1406018X
  18. Пономарев Л.И., Серегин М.Б., Михаличенко А.А. и др. // Атомная энергия. 2012. Т. 112. № 6. С. 341.
  19. Masset P., Konings R.J.M., Malmbeck R. et al. // J. Nucl. Mater. 2005. V. 344. P. 173. https://doi.org/10.1016/j.jnucmat.2005.04.038
  20. Murakami T., Rodrigues A., Ougier M. et al. // J. Nucl. Mater. 2015. V. 466. P. 502. https://doi.org/10.1016/j.jnucmat.2015.08.045
  21. Ghosh S., Ganesan R., Sridharan R. et al. // Thermochim. Acta. 2017. V. 653. P. 16. https://doi.org/10.1016/j.tca.2017.03.024
  22. Воробьева В.П., Зеленая А.Э., Луцык В.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1090. https://doi.org/10.31857/S0044457X23600524
  23. Fredrickson G.L., Yoo T.-S. // J. Nucl. Mater. 2020. V. 528. P. 151883. https://doi.org/10.1016/j.jnucmat.2019.151883
  24. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. et al. // J. Phase Equilib. Diffus. 2021. V. 42. P. 175. https://doi.org/10.1007/s11669-021-00863-3
  25. Prince A. Alloy Phase Equilibria. Amsterdam–London–New York: Elsevier Publ. Comp., 1966. 290 p.
  26. Connell R.G. // J. Phase Equilib. Diffus. 1994. V. 15. № 1. P. 6. https://doi.org/10.1007/s11669-021-00863-3
  27. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25. https://doi.org/10.1007/s10973-010-0855-0
  28. Lukas H.L., Henig E.T., Petzow G. // Z. Metallkd. 1986. V. 77. P. 360.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (224KB)
3.

Baixar (279KB)
4.

Baixar (383KB)
5.

Baixar (89KB)
6.

Baixar (400KB)
7.

Baixar (34KB)
8.

Baixar (392KB)
9.

Baixar (451KB)
10.

Baixar (696KB)

Declaração de direitos autorais © В.П. Воробьева, А.Э. Зеленая, В.И. Луцык, М.В. Ламуева, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».