Spatial Computer Model of the UCl3–NaCl–MgCl2–PuCl3 Isobaric Phase Diagram
- Autores: Vorob’eva V.P.1, Zelenaya A.E.1, Lutsyk V.I.1, Lamueva M.V.1
-
Afiliações:
- Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
- Edição: Volume 68, Nº 11 (2023)
- Páginas: 1626-1636
- Seção: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://journals.rcsi.science/0044-457X/article/view/231673
- DOI: https://doi.org/10.31857/S0044457X23600780
- EDN: https://elibrary.ru/YZXQVU
- ID: 231673
Citar
Resumo
A four-dimensional (4D, in concentration–temperature coordinates) computer model of the isobaric phase diagram of uranium, sodium, magnesium, and plutonium chlorides, as well as four three-dimensional (3D) computer models of the phase diagrams of the ternary systems forming it, has been constructed. The technology of assembling a 4D model of 46 hypersurfaces and 17 phase regions was used in the design. The obtained 4D model of the UCl3–NaCl–MgCl2–PuCl3 phase diagram makes it possible to visualize a four-dimensional object as a whole (with all its hypersurfaces and phase regions) by any arbitrarily given 2D and 3D sections, as well as it is able to reproduce published (experimental or thermodynamically calculated) 2D sections. The scope of application of the results of the work is the development of materials for fuel components of fourth-generation molten salt reactors and pyrochemical recycling of spent fuel rods. For the first time, a comprehensive, complete description of phase diagrams composed of uranium, plutonium, sodium, and magnesium chlorides has been obtained.
Sobre autores
V. Vorob’eva
Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia
A. Zelenaya
Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia
V. Lutsyk
Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia
M. Lamueva
Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia
Bibliografia
- Yin H., Wu S., Wang X. et al // J. Fluor. Chem. 2019. V. 217. P. 90. https://doi.org/10.1016/j.jfluchem.2018.09.008
- Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 250. https://doi.org/10.31857/S0044457X21020070
- Mourogov A., Bokov P.M. // Energy Convers. Manage. 2006. V. 47. P. 2761. https://doi.org/10.1016/j.enconman.2006.02.013
- Pelton A.D., Chartrand P. // Metall. Mater. Trans. A. 2001. V. 32A. P. 1361. https://doi.org/10.1007/s11661-001-0227-2
- Trnovcova V., Garashina L.S., Skubla A. et al // Solid State Ionics. 2003. V. 157. P. 195. https://doi.org/10.1016/S0167-2738(02)00209-6
- Федоров П.П., Бучинская И.И., Бондарева О.С. и др. // Журн. неорган. химии. 2000. Т. 45. № 6. С. 1054.
- Beneš O., Konings R.J.M. // J. Nucl. Mater. 2008. V. 375. P. 202. https://doi.org/10.1016/j.jnucmat.2008.01.007
- Beneš O. Thermodynamics of Molten Salts for Nuclear Applications. PhD, Diss. Prague, Chech Rep. 2008. 205 p.
- Bulavin L., Plevachuk Yu., Sklyarchuk V. et al. // J. Nucl. Mater. 2013. V. 433. P. 329. https://doi.org/10.1016/j.jnucmat.2012.08.045
- Yin H., Wu X., Ling C. et al. // CALPHAD. 2022. V. 77. 102427. https://doi.org/10.1016/j.calphad.2022.102427
- Yin H., Lin J., Hu B. et al. // CALPHAD. 2020. V. 70. 101783. https://doi.org/10.1016/j.calphad.2020.101783
- Yingling J.A., Schorne-Pinto J., Aziziha M. et al. // J. Chem. Thermodyn. 2023. V. 179. 106974. https://doi.org/10.1016/j.jct.2022.106974
- Beneš O., van der Meer J.P.M., Konings R.J.M. // CALPHAD. 2007. V. 31. P. 209. https://doi.org/10.1016/j.calphad.2006.12.004
- Beneš O., Konings R.J.M. // J. Nucl. Mater. 2008. V. 377. P. 449. https://doi.org/10.1016/j.jnucmat.2008.04.004
- Beneš O., Konings R.J.M. // CALPHAD. 2008. V. 32. P. 121. https://doi.org/10.1016/j.calphad.2007.07.006
- van der Meer J.P.M., Konings R.J.M., Oonk H.A.J. // J. Nucl. Mater. 2006. V. 357. P. 48. https://doi.org/10.1016/j.jnucmat.2006.05.042
- Савчук Р.Н., Файдюк Н.В., Омельчук А.А. и др. // Журн. неорган. химии. 2014. Т. 59. № 6. С. 780. https://doi.org/10.7868/S0044457X1406018X
- Пономарев Л.И., Серегин М.Б., Михаличенко А.А. и др. // Атомная энергия. 2012. Т. 112. № 6. С. 341.
- Masset P., Konings R.J.M., Malmbeck R. et al. // J. Nucl. Mater. 2005. V. 344. P. 173. https://doi.org/10.1016/j.jnucmat.2005.04.038
- Murakami T., Rodrigues A., Ougier M. et al. // J. Nucl. Mater. 2015. V. 466. P. 502. https://doi.org/10.1016/j.jnucmat.2015.08.045
- Ghosh S., Ganesan R., Sridharan R. et al. // Thermochim. Acta. 2017. V. 653. P. 16. https://doi.org/10.1016/j.tca.2017.03.024
- Воробьева В.П., Зеленая А.Э., Луцык В.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1090. https://doi.org/10.31857/S0044457X23600524
- Fredrickson G.L., Yoo T.-S. // J. Nucl. Mater. 2020. V. 528. P. 151883. https://doi.org/10.1016/j.jnucmat.2019.151883
- Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. et al. // J. Phase Equilib. Diffus. 2021. V. 42. P. 175. https://doi.org/10.1007/s11669-021-00863-3
- Prince A. Alloy Phase Equilibria. Amsterdam–London–New York: Elsevier Publ. Comp., 1966. 290 p.
- Connell R.G. // J. Phase Equilib. Diffus. 1994. V. 15. № 1. P. 6. https://doi.org/10.1007/s11669-021-00863-3
- Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25. https://doi.org/10.1007/s10973-010-0855-0
- Lukas H.L., Henig E.T., Petzow G. // Z. Metallkd. 1986. V. 77. P. 360.
Arquivos suplementares
