Structure and Luminescent Properties of Tellurium(IV) Bromide Complex with p-Toluidinium (HPT)2TeBr6 · H2O
- Authors: Bukvetskii B.V.1, Sedakova T.V.1, Mirochnik A.G.1
-
Affiliations:
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 68, No 12 (2023)
- Pages: 1740-1747
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/231664
- DOI: https://doi.org/10.31857/S0044457X2360130X
- EDN: https://elibrary.ru/HUCMFV
- ID: 231664
Cite item
Abstract
A complex of tellurium(IV) bromide with p-toluidinium, (HPT)2TeBr6·H2O, was synthesized, its crystal structure was determined by X-ray diffraction, and its absorption and luminescent properties were studied. A comparative study of the luminescent properties at 77 K was performed for a number of tellurium(IV) bromide complexes with outer-sphere cations: cesium, rubidium, tetraethylammonium, and p-toluidinium. The electronic and geometric aspects determining the absorption and luminescent properties of the tellurium(IV) bromide complexes are considered. At 77 K, (HPT)2TeBr6·H2O is characterized by luminescence in the near-IR range; the luminescence band maximum is significantly red-shifted (>50 nm) with respect to those of the analogues. The luminescence intensity of complex compounds is influenced by the geometric structure (type of anionic sublattice and the structure and degree of distortion of the coordination polyhedron of the s2-ion). The coordination polyhedron distortion and the presence of a dense system of hydrogen bonds account for the minimum luminescence intensity of the (HPT)2TeBr6·H2O complex among other tellurium(IV) bromide compounds.
Keywords
About the authors
B. V. Bukvetskii
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: mirochnik@ich.dvo.ru
690022, Vladivostok, Russia
T. V, Sedakova
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: mirochnik@ich.dvo.ru
690022, Vladivostok, Russia
A. G. Mirochnik
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Author for correspondence.
Email: mirochnik@ich.dvo.ru
690022, Vladivostok, Russia
References
- Maughan A.E., Ganose A.M., Bordelon M.M. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 8453. https://doi.org/10.1021/jacs.6b03207
- Liu M., Johnston M.B., Snaith H.J. // Nature. 2013. V. 501. P. 395. https://doi.org/10.1038/nature12509
- Benin B.M., Dirin D.N., Morad V. et al. // Angew. Chem., Int. Ed. 2018. V. 57. P. 11329. https://doi.org/10.1002/anie.201806452
- Hoefler S.F., Trimmel G., Rath T. // Monatsh. Chem. 2017. V. 148. P. 795. https://doi.org/10.1007/s00706-017-1933-9
- Cai Y., Xie W., Ding H. et al. // Chem. Mater. 2017. V. 29. P. 7740. https://doi.org/10.1021/acs.chemmater.7b02013
- Si S., Guo X., Gan W. et al. // J. Lumin. 2022. V. 251. P. 119212. https://doi.org/10.1016/j.jlumin.2022.119212
- Li X., Wang Z., Sun H. et al. // J. Colloid Interface Sci. 2023. V. 633. P. 808. https://doi.org/10.1016/j.jcis.2022.11.132
- Mahmood Q., Alhossainy M.H., Rashide M.S. et al. // Mater. Sci. Eng., B. 2021. V. 266. P. 115064. https://doi.org/10.1016/j.mseb.2021.115064
- Fizer M., Slivka M., Sidey V. et al. // J. Mol. Struct. 2021. V. 1235. P. 130227. https://doi.org/10.1016/j.molstruc.2021.130227
- Wang Z.-P., Wang J.-Y., Li J.-R. et al. // Chem. Commun. 2015. V. 15. P. 3094. https://doi.org/10.1039/C4CC08825E
- Vovna V.I., Dotsenko A.A., Korochentsev V.V. et al. // J. Mol. Struct. 2015. V. 1091. P. 138. https://doi.org/10.1016/j.molstruc.2015.02.068
- Седакова Т.В., Мирочник А.Г. // Опт. спектроскопия. 2015. Т. 119. № 1. С. 57.
- He J., Zeller M., Hunter A.D., Xu Zt. // J. Am. Chem. Soc. 2012. V. 134. № 3. P. 1553. https://doi.org/10.1021/ja2073559
- Strasser A., Vogler A. // J. Photochem. Photobiol., A. 2004. V. 165. № 1–3. P. 115. https://doi.org/10.1016/j.jphotochem.2004.03.007
- Strasser A., Vogler A. // Inorg. Chem. Commun. 2004. V. 7. № 4. P. 528. https://doi.org/10.1016/j.inoche.2003.12.039
- Degen J., Diehl M., Schmidtke H.H. // Mol. Phys. 1993. V. 78. № 1. P. 103. https://doi.org/10.1080/00268979300100101
- Nagpal J.S., Godbole S.V., Varadharajan G. et al. // Radiat. Prot. Dosim. 1998. V. 80. № 4. P. 417. https://doi.org/10.1093/oxfordjournals.rpd.a032562
- Blasse G. // Chem. Phys. Lett. 1984. V. 104. № 2–3. P. 160. https://doi.org/10.1016/0009-2614(84)80188-8
- Blasse G. // Rev. Inorg. Chem. 1983. V. 5. № 4. P. 319.
- Nikol H., Vogler A. // Inorg. Chem. 1993. V. 32. № 7. P. 1072. https://doi.org/10.1021/ic00059a006
- Wernicke R., Kupka H., Ensslin W. et al. // Chem. Phys. 1980. V. 47. № 2. P. 235. https://doi.org/10.1016/0301-0104(80)85009-9
- Schmidtke H.H., Diehl M., Degen J. // J. Phys. Chem. 1992. V. 96. № 9. P. 3605. https://doi.org/10.1021/j100188a011
- Kinkely H., Vogler A. // Inorg. Chem. Commun. 2008. V. 11. № 1. P. 36. https://doi.org/10.1016/j.inoche.2007.10.010
- Drummen P.J.H., Donker H., Smit W.M.A. et al. // Chem. Phys. Lett. 1988. V. 144. № 5. P. 460. https://doi.org/10.1016/0009-2614(88)87296-8
- Blasse G., Dirksen G.J., Abriel W. // Chem. Phys. Lett. 1987. V. 136. № 5. P. 460. https://doi.org/10.1016/0009-2614(87)80287-7
- Dotsenko A.A., Vovna V.I., Korochentsev V.V. et al. // Inorg. Chem. 2019. V. 58. № 10. P. 6796. https://doi.org/10.1021/acs.inorgchem.9b00250
- Sobczyk L., Jakubas R., Zaleski J. // Polish. J. Chem. 1997. V. 71. № 3. P. 265.
- Буквецкий Б.В., Седакова Т.В., Мирочник А.Г. // Коорд. химия. 2010. Т. 36. № 9. С. 658.
- Буквецкий Б.В., Седакова Т.В., Мирочник А.Г. // Журн. неорган. химии. 2011. Т. 56. № 2. С. 251.
- Седакова Т.В., Мирочник А.Г., Карасев В.Е. // Опт. спектроскопия. 2011. Т. 110. № 3. С. 454.
- Седакова Т.В., Мирочник А.Г., Карасев В.Е. // Опт. спектроскопия. 2008. Т. 105. № 4. С. 584.
- Буквецкий Б.В., Седакова Т.В., Мирочник А.Г. // Журн. структур. химии. 2012. Т. 53. № 1. С. 320.
- Буквецкий Б.В., Седакова Т.В., Мирочник А.Г. // Коорд. химия. 2012. Т. 38. № 2. С. 112.
- Мирочник А.Г., Буквецкий Б.В., Сторожук Т.В. и др. // Журн. неорган. химии. 2003. Т. 48. № 4. С. 582.
- Waskowska A., Janczak J., Czapla Z. // J. Alloys Compd. 1993. V. 196. № 1–2. P. 255. https://doi.org/10.1016/0925-8388(93)90605-M
- Das A.K., Brown I.D. // Can. J. Chem. 1966. V. 44. P. 939.
- Engel G. // Z. Kristallogr. 1977. V. 144. P. 341.
- Dotsenko A.A., Shcheka O.L., Vovna V.I. et al. // J. Mol. Struct. 2016. V. 1109. P. 13. https://doi.org/10.1016/j.molstruc.2015.12.067
- Dotsenko A.A., Vovna V.I., Korochentsev V.V. et al. // Russ. Chem. Bull. 2015. V. 65. № 10. P. 2393. https://doi.org/10.1007/s11172-015-1168-z
- Седакова Т.В., Мирочник А.Г. // Опт. спектроскопия. 2016. Т. 120. № 2. С. 280.
- Седакова Т.В., Мирочник А.Г. // Опт. спектроскопия. 2020. Т. 128. № 10. С. 1456. https://doi.org/10.21883/OS.2020.10.50014.8-20
- Карякин Ю.В., Ангелов И.И. Чистые вещества. М.: Химия, 1974. 408 с.
- Бабко А.К., Пятницкий И.В. Количественный анализ. М.: Гос. научно-техн. изд-во хим. литер, 1956. 618 с.
- Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, 1998.
- Bruker. SHELXTL/PC.Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc. Madison, Wisconsin, 1998.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Abriel W., Ihringer J. // J. Solid State Chem. 1984. V. 52. P. 274. https://doi.org/10.1016/0022-4596(84)90010-0
- Волкова Л.М., Удовенко А.А. Проблемы кристаллохимии. М.: Наука, 1988. С. 46.
- Abriel W. // Acta Crystallogr., Sect. B. 1986. V. 42. P. 449. https://doi.org/10.1107/S0108768186097896
- Stufkens D.J. // Rec. Trav. Chim. 1970. V. 89. № 11. P. 1185.
Supplementary files
