Isomeric Molecular Forms of Pseudo-Binuclear Bismuth(III) Dithiocarbamate [Bi2{S2CN(CH2)6}6]: Preparation, Thermal Behavior, and Structural Effect of Its Solvation with DMSO, [Bi2{S2CN(CH2)6}6]⋅2(CH3)2SO

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bismuth(III) hexamethylenedithiocarbamate (HmDtc) [Bi2{S2CN(CH2)6}6] (I) and its solvated with dimethyl sulfoxide form [Bi2(S2CNHm)6]⋅2(CH3)2SO (II) have been obtained. The crystal structure of compound I shows an unusual alternation of two unsymmetrical isomeric pseudo-binuclear [Bi1/1B(HmDtc)3···Bi1A/1C(HmDtc)3] molecules, each of which involves two non-equivalent mononuclear moieties combined by secondary Bi···S bonds. The solvation of complex I leads to the structural unification of isomeric [Bi(HmDtc)3] molecules followed by their self-organization into centrosymmetric pseudo-dimers in the structure of compound II. All HmDtc ligands coordinate in S,S'-anisobidentate mode to form four isomeric (in I) or structurally unique [Bi(HmDtc)3] molecules (in II), whose distorted polyhedra can be approximated by pentagonal pyramid or octahedron. Solvating DMSO molecules are retained in the structure II by C–H···O hydrogen bonds. The analysis of energy dispersive X-ray spectra allowed one to identify the residual matter obtained by thermolysis of the complexes as Bi2S3 with admixture of Bi0.

About the authors

E. V. Novikova

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
675000, Blagoveshchensk, Russia

I. V. Egorova

Blagoveshchensk State Pedagogical University

Email: alexander.v.ivanov@chemist.com
675000, Blagoveshchensk, Russia

K. L. Isakovskaya

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia

Email: alexander.v.ivanov@chemist.com
119991, Moscow, Russia; 125047, Moscow, Russia

A. V. Ivanov

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: alexander.v.ivanov@chemist.com
675000, Blagoveshchensk, Russia

References

  1. Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
  2. Chauhan R., Chaturvedi J., Trivedi M. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 168. https://doi.org/10.1016/j.ica.2015.03.007
  3. Kun W.N., Mlowe S., Nyamen L.D. et al. // Polyhedron. 2018. V. 154. P. 173. https://doi.org/10.1016/j.poly.2018.07.055
  4. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 121. P. 70. https://doi.org/10.1016/j.poly.2016.09.038
  5. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111. https://doi.org/10.1016/j.poly.2016.10.026
  6. Abdullah N.H., Zainal Z., Silong S. et al. // Thermochim. Acta. 2016. V. 632. P. 37. https://doi.org/10.1016/j.tca.2016.03.001
  7. Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. № 5. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
  8. Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2013.09.018
  9. Sun R.-Z., Guo Y.-C., Liu W.-M. et al. // Chin. J. Struct. Chem. 2012. V. 31. № 5. P. 655.
  10. Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. № 6. P. 1097. https://doi.org/10.1080/00958972.2014.908188
  11. Ozturk I.I., Banti C.N., Kourkoumelis N. et al. // Polyhedron. 2014. V. 67. P. 89. https://doi.org/10.1016/j.poly.2013.08.052
  12. Adeyemi J.O., Onwudiwe D.C. // Molecules. 2020. V. 25. № 2. P. 305. https://doi.org/10.3390/molecules25020305
  13. Chan P.F., Ang K.P., Hamid R.A. // Biometals. 2021. V. 34. № 2. P. 365. https://doi.org/10.1007/s10534-021-00286-0
  14. Lai C.S., Tiekink E.R.T. // Z. Kristallogr. 2007. V. 222. № 10. P. 532. https://doi.org/10.1524/zkri.2007.222.10.532
  15. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
  16. Baba I., Karimah K., Farina Y. et al. // Acta Crystallogr., Sect. E: Struct. 2002. V. 58. № 12. P. m756. https://doi.org/10.1107/S1600536802021256
  17. Battaglia L.P., Corradi A.B. // J. Chem. Soc., Dalton Trans. 1986. № 8. P. 1513. https://doi.org/10.1039/DT9860001513
  18. Иванов А.В., Егорова И.В., Иванов М.А. и др. // Докл. РАН. 2014. Т. 454. № 2. С. 190.
  19. Gowda V., Sarma B., Laitinen R.S. et al. // Polyhedron. 2017. V. 129. P. 123. https://doi.org/10.1002/slct.202001692
  20. Новикова Е.В., Заева А.С., Денисов Г.Л. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 103.
  21. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  22. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  24. Казицына Л.A., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
  25. Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260.
  26. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707.
  27. SpectraBase Compound ID=5Zceg8XzL6u John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/5Zceg8XzL6u (дата обращения 09.02.2023).
  28. SpectraBase Compound ID=DiJQuAXLpJE John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/DiJQuAXLpJE (дата обращения 09.02.2023).
  29. Cotton F.A., Francis R., Horrocks W.D. // J. Phys. Chem. 1960. V. 64. № 10. P. 1534. https://doi.org/10.1021/j100839a046
  30. Тарасевич Б.Н. Основы ИК спектроскопии с преобразованием Фурье. Подготовка проб в ИК спектроскопии. M.: МГУ, 2012. 22 с.
  31. Кукушкин Ю.Н. Химия координационных соединений. М.: Высш. шк., 1985. 455 с.
  32. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. № 4. P. 687. https://doi.org/10.1021/ja00837a001
  33. Boessenkool I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1/2. P. 11. https://doi.org/10.1007/BF01209549
  34. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1. https://doi.org/10.1016/S0065-2792(08)60016-3
  35. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871. https://doi.org/10.1023/A:1011625728803
  36. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
  37. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375. https://doi.org/10.1524/zkri.2009.1158
  38. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
  39. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  40. Lin J.-C., Sharma R.C., Chang Y.A. // J. Phase Equilib. 1996. V. 17. № 2. P. 132. https://doi.org/10.1007/BF02665790
  41. Ge Z.-H., Qin P., He D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 5. P. 4828. https://doi.org/10.1021/acsami.6b14803
  42. Zeynali H., Mousavi S.B., Hosseinpour-Mashkani S.M. // Mater. Lett. 2015. V. 144. P. 65. https://doi.org/10.1016/j.matlet.2015.01.023

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (858KB)
6.

Download (430KB)
7.

Download (138KB)
8.

Download (167KB)
9.

Download (1MB)
10.

Download (1MB)

Copyright (c) 2023 Е.В. Новикова, И.В. Егорова, К.Л. Исаковская, А.В. Иванов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies