Controlling the Degree of Substitution of Lanthanides in Anionic Positions in Complexes [CeNi6(Ala)12][(LnxCe1 – x)(NO3)3(OH)3(H2O)]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of 32 heterometallic ionic complexes [CeNi6(Ala)12][(LnxCe1 – x)(NO3)3(OH)3(H2O)] (Ln = Tb, Ho, Er, Tm, Yb, Lu) have been synthesized and characterized by XRD and IPC-MS. The dependence of the degree of substitution of lanthanides in the anionic position on the nature of Ln3+ and precipitation conditions has been determined. The processes occurring during the formation of the complexes have been studied by UV-Vis, diffuse reflectance electronic spectroscopy, and ICP-MS. Based on these data, a model of equilibria in the system was proposed to explain the increase in the degree of substitution of Ln in the anionic position in the lanthanide series and with a decrease in the concentration of Ce and Ln in the solution from which precipitation is performed.

About the authors

D. D. Semeshkina

Moscow State University

Email: semeshkina.d@gmail.com
119991, Moscow, Russia

Yu. A. Belousov

Moscow State University; Lebedev Physical Institute, Russian Academy of Sciences

Email: semeshkina.d@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

A. R. Savarets

Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: semeshkina.d@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

M. V. Berekchiyan

Moscow State University

Email: semeshkina.d@gmail.com
119991, Moscow, Russia

V. D. Dolzhenko

Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: semeshkina.d@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

References

  1. Gontcharenko V.E., Lunev A.M., Taydakov I.V. et al. // IEEE Sens. J. 2019. V. 19. № 17. P. 7365. https://doi.org/10.1109/JSEN.2019.2916498
  2. Lunev A.M., Belousov Y.A. // Russ. Chem. Bull. 2022. V. 71. № 5. P. 825. https://doi.org/10.1007/S11172-022-3485-3
  3. Kordeyro Magrino D.A., Korshunov V.M., Lyssenko K.A. et al. // Inorg. Chim. Acta. 2020. V. 510. P. 119764. https://doi.org/10.1016/J.ICA.2020.119764
  4. Taydakov I.V., Korshunov V.M., Belousov Y.A. et al. // Inorg. Chim. Acta. 2020. V. 513. P. 119922. https://doi.org/10.1016/J.ICA.2020.119922
  5. Pettinari C., Marchetti F., Pettinari R. et al. // Dalton Trans. 2015. V. 44. № 33. P. 14887. https://doi.org/10.1039/C5DT01964H
  6. Pan Z.H., Weng Z.Z., Kong X.J. et al. // Coord. Chem. Rev. 2022. V. 457. P. 214419. https://doi.org/10.1016/j.ccr.2022.214419
  7. Ferreira A.C., Martinho J.F., Branco J.B. // ChemCatChem. 2022. V. 14. № 7. P. 1. https://doi.org/10.1002/cctc.202101548
  8. Bell D.J., Natrajan L.S., Riddell I.A. // Coord. Chem. Rev. 2022. V. 472. P. 214786. https://doi.org/10.1016/j.ccr.2022.214786
  9. Zhu C., Zhou Y., Yang J. et al. // Org. Chem. Front. 2023. V. 10. № 5. P. 1263. https://doi.org/10.1039/d2qo01930b
  10. Moinet E.C., Wolf B.M., Tardif O. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. e202219316. https://doi.org/10.1002/anie.202219316
  11. Xie Y., Song Y., Sun G. et al. // Light Sci. Appl. 2022. V. 11. № 1. P. 813. https://doi.org/10.1038/s41377-022-00813-9
  12. Jobin F., Paradis P., Aydin Y.O. et al. // Opt. Express. 2022. V. 30. № 6. P. 8615. https://doi.org/10.1364/oe.450929
  13. Belousov Y.A., Drozdov A.A., Taydakov I.V. et al. // Coord. Chem. Rev. 2021. V. 445. P. 214084. https://doi.org/10.1016/J.CCR.2021.214084
  14. Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. № 18. P. 8393.
  15. Ilmi R., Zhang D., Tensi L. et al. // Dye. Pigment. 2022. V. 203. P. 300. https://doi.org/10.1016/j.dyepig.2022.110300
  16. Metlina D.A., Goryachii D.O., Metlin M.T. et al. // Materials (Basel). 2023. V. 16. № 3. P. 31243. https://doi.org/10.3390/ma16031243
  17. Galland M., Le Bahers T., Banyasz A. et al. // Chem. – A Eur. J. 2019. V. 25. № 38. P. 9026. https://doi.org/10.1002/chem.201901047
  18. Dasari S., Singh S., Sivakumar S. et al. // Chem. – A Eur. J. 2016. V. 22. № 48. P. 17387. https://doi.org/10.1002/chem.201603453
  19. Xie C., Chau H.F., Zhang J.X. et al. // Adv. Ther. 2019. V. 2. № 11. P. 1900068. https://doi.org/10.1002/adtp.201900068
  20. Cabral Campello M.P., Palma E., Correia I. et al. // Dalton Trans. 2019. V. 48. № 14. P. 4611. https://doi.org/10.1039/c9dt00640k
  21. Liu Y.C., Chen Z.F., Song X.Y. et al. // Eur. J. Med. Chem. 2013. V. 59. P. 168. https://doi.org/10.1016/j.ejmech.2012.11.001
  22. Kwong W.L., Wai-Yin Sun R., Lok C.N. et al. // Chem. Sci. 2013. V. 4. № 2. P. 747. https://doi.org/10.1039/c2sc21541a
  23. Li H., Xie C., Lan R. et al. // J. Med. Chem. 2017. V. 60. № 21. P. 8923. https://doi.org/10.1021/acs.jmedchem.7b01162
  24. Li H., Lan R., Chan C.F. et al. // Chem. Commun. 2015. V. 51. № 74. P. 14022. https://doi.org/10.1039/c5cc05461c
  25. Li H., Harriss B.I., Phinikaridou A. et al. // Nanotheranostics. 2017. V. 1. № 2. P. 186. https://doi.org/10.7150/ntno.18619
  26. Chandra A., Singh K., Singh S. et al. // Dalton Trans. 2016. V. 45. № 2. P. 494. https://doi.org/10.1039/c5dt04470g
  27. Moore E.G., Samuel A.P.S., Raymond K.N. // Acc. Chem. Res. 2009. V. 42. № 4. P. 542. https://doi.org/10.1021/ar800211j
  28. Kanal E. // Magn. Reson. Imaging. 2016. V. 34. № 10. P. 1341. https://doi.org/10.1016/j.mri.2016.08.017
  29. Bellin M.F., Van Der Molen A.J. // Eur. J. Radiol. 2008. V. 66. № 2. P. 160. https://doi.org/10.1016/j.ejrad.2008.01.023
  30. Goodwin C.A.P., Ortu F., Reta D. et al. // Nature. 2017. V. 548. № 7668. P. 439. https://doi.org/10.1038/nature23447
  31. Guo F.S., Day B.M., Chen Y.C. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 38. P. 11445. https://doi.org/10.1002/anie.201705426
  32. Rosado Piquer L., Sañudo E.C. // Dalton Trans. 2015. V. 44. № 19. P. 8771. https://doi.org/10.1039/c5dt00549c
  33. Chen J.T., Yan H., Wang T.T. et al. // Inorg. Chem. 2022. V. 61. № 48. P. 19097. https://doi.org/10.1021/acs.inorgchem.2c02474
  34. Georgiev M., Chamati H. // ACS Omega. 2022. V. 7. № 47. P. 42664. https://doi.org/10.1021/acsomega.2c06119
  35. Liu C.M., Sun R., Wang B.W. et al. // Inorg. Chem. 2022. V. 61. № 46. P. 18510. https://doi.org/10.1021/acs.inorgchem.2c02743
  36. Mautner F.A., Bierbaumer F., Fischer R.C. et al. // Inorg. Chem. 2022. V. 61. № 29. P. 11124. https://doi.org/10.1021/acs.inorgchem.2c00958
  37. Canaj A.B., Kakaroni F., Collet A. et al. // Polyhedron. 2018. V. 151. P. 1. https://doi.org/10.1016/j.poly.2018.05.005
  38. Stavgianoudaki N., Siczek M., Lis T. et al. // Chem. Commun. 2016. V. 52. № 2. P. 343. https://doi.org/10.1039/c5cc07243c
  39. Peristeraki T., Samios M., Siczek M. et al. // Inorg. Chem. 2011. V. 50. № 11. P. 5175. https://doi.org/10.1021/ic2004744
  40. Hosoi A., Yukawa Y., Igarashi S. et al. // Chem. – A Eur. J. 2011. V. 17. № 30. P. 8264. https://doi.org/10.1002/chem.201100769
  41. Yukawa Y., Aromí G., Igarashi S. et al. // Angew. Chem. Int. Ed. 2005. V. 44. № 13. P. 1997. https://doi.org/10.1002/anie.200462401
  42. Kong X.J., Ren Y.P., Long L.S. et al. // J. Am. Chem. Soc. 2007. V. 129. № 22. P. 7016. https://doi.org/10.1021/ja0726198
  43. Sopasis G.J., Orfanoudaki M., Zarmpas P. et al. // Inorg. Chem. 2012. V. 51. № 2. P. 1170. https://doi.org/10.1021/ic2024007
  44. Bezzubov S.I., Bilyalova A.A., Zharinova I.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 9. P. 1197. https://doi.org/10.1134/S0036023617090030
  45. Bezzubov S.I., Churakov A.V., Belousov Y.A. et al. // Cryst. Growth Des. 2017. V. 17. № 3. P. 1166. https://doi.org/10.1021/acs.cgd.6b01563
  46. Du W.X., Zhang J.J., Hu S.M. et al. // J. Mol. Struct. 2004. V. 701. № 1–3. P. 25. https://doi.org/10.1016/j.molstruc.2004.05.011
  47. Liu Q.De, Gao S., Li J.R. et al. // Inorg. Chem. 2000. V. 39. № 12. P. 2488. https://doi.org/10.1021/ic990860k
  48. Liu Q.De, Li J.R., Gao S. et al. // Eur. J. Inorg. Chem. 2003. № 4. P. 731. https://doi.org/10.1002/ejic.200390101
  49. Sopasis G.J., Canaj A.B., Philippidis A. et al. // Inorg. Chem. 2012. V. 51. № 10. P. 5911. https://doi.org/10.1021/ic300538q
  50. Igarashi S., Hoshino Y., Masuda Y. et al. // Inorg. Chem. 2000. V. 39. № 12. P. 2509. https://doi.org/10.1021/ic991027q
  51. Zhang J.J., Hu S.M., Xiang S.C. et al. // J. Mol. Struct. 2005. V. 748. № 1–3. P. 129. https://doi.org/10.1016/j.molstruc.2005.03.021
  52. Komiyama T., Igarashi S., Hoshino Y. et al. // Chem. Lett. 2005. V. 34. № 3. P. 300. https://doi.org/10.1246/cl.2005.300
  53. Khatib A., Aqra F. // Bull. Korean Chem. Soc. 2009. V. 30. № 9. P. 2017. https://doi.org/10.5012/bkcs.2009.30.9.2017

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (527KB)
3.

Download (360KB)
4.

Download (145KB)
5.

Download (50KB)
6.

Download (117KB)
7.

Download (49KB)
8.

Download (1MB)
9.

Download (113KB)
10.

Download (61KB)
11.

Download (28KB)

Copyright (c) 2023 Д.Д. Семешкина, Ю.А. Белоусов, А.Р. Саварец, М.В. Берекчиян, В.Д. Долженко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».