Синтез и структура дикарбоксилсодержащих трис-глиоксиматов железа(II) с линейной и угловой геометрией их молекул

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Темплатной конденсацией хелатирующего α-диоксиматного лигандного синтона – глиоксима и подходящего сшивающего агента – монофункционализированной бороновой (3-карбоксифенилбороновой или 4-карбоксифенилбороновой) кислоты Льюиса в кипящем нитрометане как растворителе на матрице – ионе железа(II) были получены макробициклические дикарбоксилсодержащие трис-глиоксиматы железа(II) с функционализирующими мета- и пара-заместителями в их апикальных борсодержащих ароматических фрагментах. Состав и строение полученных комплексов установлены с использованием данных элементного анализа, ЭСП, 1H и 13C{1H} ЯМР-спектроскопии; их кристаллическая и молекулярная структуры были определены методом РСА. Элементарные ячейки их монокристаллов содержат помимо молекулы клатрохелата две молекулы соответствующего растворителя, которые образуют водородные связи с ее функционализирующими карбоксильными группами. Инкапсулированный ион железа(II) в этих молекулах находится в центре FeN6-координационного полиэдра. Геометрия этих полиэдров промежуточная между тригональной призмой (ТП, угол искажения φ = 0°) и тригональной антипризмой (ТАП, φ = 60°); величины угла φ в них составляют 17.1° и 18.9° соответственно. Расстояния Fe–N изменяются от 1.901(2) до 1.924(2) Å, что свидетельствует о низкоспиновом диамагнитном состоянии иона железа(II). Свободное вращение апикальных ароматических заместителей при сшивающих атомах бора клатрохелатных молекул относительно ординарных связей B–C определяет отсутствие их копланарности. Внутримолекулярные расстояния С…С между терминальными карбоксильными группами в их апикальных заместителях составляют 15.693(4) и 17.888(3) Å соответственно для клатрохелатных мета- и пара-изомеров. Вышеупомянутое вращение позволяет реализовать угловую геометрию мета-дикарбоксилсодержащего клатрохелата с образованием ∠C…Fe…C ⁓145° между его терминальными О-донорными карбоксильными группами. Этот комплекс может выступать как в качестве углового, так и линейного трехмерного лиганда, тогда как его пара-замещенный клатрохелатный изомер является перспективным линейным металлолигандом.

Авторлар туралы

А. Чуприн

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: voloshin@igic.ras.ru
Россия, 119334, Москва, ул. Вавилова, 28, стр. 1

С. Дудкин

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: voloshin@igic.ras.ru
Россия, 119334, Москва, ул. Вавилова, 28, стр. 1

А. Вологжанина

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: voloshin@igic.ras.ru
Россия, 119334, Москва, ул. Вавилова, 28, стр. 1

Я. Волошин

Институт элементоорганических соединений им. А.Н. Несмеянова РАН; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Хат алмасуға жауапты Автор.
Email: voloshin@igic.ras.ru
Россия, 119334, Москва, ул. Вавилова, 28, стр. 1; Россия, 119991, Москва, Ленинский пр-т, 31

Әдебиет тізімі

  1. Voloshin Y.Z., Belaya I., Kramer R. Cage Metal Complexes: Clathrochelates Revisited, Springer, 2017. [Волошин Я.З., Белая И.Г., Кремер Р. Клеточные комплексы металлов: клатрохелаты возвращаются. М., 2019.]
  2. Marmier M., Wise M.D., Holstein J.J. et al. // Inorg. Chem. 2016. V. 55. P. 4006. https://doi.org/10.1021/acs.inorgchem.6b00276
  3. Planes O.M., Jansze S.M., Scopelliti R. et al. // Inorg. Chem. 2020. V. 59. P. 14544. https://doi.org/10.1021/acs.inorgchem.0c02358
  4. Lebed E.G., Belov A.S., Dolganov A.V. et al. // Inorg. Chem. Commun. 2013. V. 33. P. 57. https://doi.org/10.1016/j.inoche.2013.04.021
  5. Pascu M., Marmier M., Schouwey C. et al. // Chem. Eur. J. 2014. V. 20. P. 5592. https://doi.org/10.1002/chem.201400285
  6. Wise M.D., Holstein J.J., Pattison P. et al. // Chem. Sci. 2015. V. 6. P. 1004. https://doi.org/10.1039/c4sc03046j
  7. Jansze S., Cecot G., Wise M.D. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 2046. https://doi.org/10.1021/jacs.5b13190
  8. Cecot G., Marmier M., Geremia S. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 8371. https://doi.org/10.1021/jacs.7b04861
  9. Jansze S.M., Wise M.D., Vologzhanina A.V. et al. // Chem. Sci. 2017. V. 8. P. 1901. https://doi.org/10.1039/C6SC04732G
  10. Jansze S.M., Ortiz D., Fadaei T.F. et al. // Chem. Commun. 2018. V. 54. P. 9529. https://doi.org/10.1039/C8CC04870C
  11. Bila J.L., Marmier M., Zhurov K.O. et al. // Eur. J. Inorg.Chem. 2018. V. 26. P. 3118. https://doi.org/10.1002/ejic.201800045
  12. Cecot G., Doll M.T., Planes O.M. et al. // Eur. J. Inorg. Chem. 2019. P. 2972. https://doi.org/10.1002/ejic.201900483
  13. Dudkin S.V., Chuprin A.S., Belova S.A. et al. // J. Porphyrins Phthalocyanines. 2022. V. 26. https://doi.org/10.1142/s1088424622500924
  14. Lesnikowski Z.J. // J. Med. Chem. 2016. V. 59. P. 7738. https://doi.org/10.1021/acs.jmedchem.5b01932
  15. Stockmann P., Gozzi M., Kuhnert R. et al. // Chem. Soc. Rev. 2019. V. 48. P. 3497. https://doi.org/10.1039/C9CS00197B
  16. Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
  17. Voloshin Y., Novikov V., Nelyubina Y. // RSC Adv. 2015. V. 5. P. 72621. https://doi.org/10.1039/C5RA10949C
  18. Novikov V.V., Varzatskii O.A., Negrutska V.V. et al. // J. Inorg. Biochem. 2013. V. 124. P. 42. https://doi.org/10.1016/j.jinorgbio.2013.03.005
  19. Varzatskii O.A., Novikov V.V., Shulga S.V. et al. // Chem. Commun. 2014. V. 50. P. 3166. https://doi.org/10.1039/C3CC47018K
  20. Varzatskii O.A., Shul’ga S.V., Belov A.S. et al. // Dalton Trans. 2014. V. 43. P. 17934. https://doi.org/10.1039/C4DT01557F
  21. Belov A., Vologzhanina A., Novikov V. et al. // Inorg. Chim. Acta. 2014. V. 421. P. 300. https://doi.org/10.1016/j.ica.2014.06.016
  22. Varzatskii O.A., Vologzhanina A.V., Novikov V.V. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 90. https://doi.org/10.1016/j.ica.2018.06.004
  23. Kovalska V.B., Vakarov S.V., Kuperman M.V. et al. // Dalton Trans. 2018. V. 47. P. 1036. https://doi.org/10.1039/C7DT03731G
  24. Kovalska V., Vakarov S., Chornenka N. et al. // Rus. J. Inorg. Chem. 2020. V. 65. P. 1513. https://doi.org/10.1134/S0036023620100137
  25. Kovalska V.B., Losytskyy M.Y., Varzatskii O.A. et al. // Bioorg. Med. Chem. 2014. V. 22. P. 1883. https://doi.org/10.1016/j.bmc.2014.01.048
  26. Park D.J., Stern A.G., Wilier R.L. // Synth. Commun. 1990. V. 20. P. 2901. https://doi.org/10.1080/00397919008051503
  27. Wojdyr M. // J. Appl. Crystallogr. 2010. V. 43. P. 1126. https://doi.org/10.1107/S0021889810030499
  28. Sheldrick G.M. // Acta Cryst. 2015. V. A71. P. 3. https://doi.org/10.1107/S2053273314026370
  29. Sheldrick G.M. // Acta Cryst. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  31. Belova S.A., Belov A.S., Efimov N.N. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1151. https://doi.org/10.1134/S0036023622080034

Қосымша файлдар


© А.С. Чуприн, С.В. Дудкин, А.В. Вологжанина, Я.З. Волошин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>