Synthesis of CeO2 and CeO2/C Using Powdered Cellulose and Powdered Cellulose–Sucrose as a Template
- Autores: Shishmakov A.B.1, Mikushina Y.V.1, Koryakova O.V.1
-
Afiliações:
- Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
- Edição: Volume 68, Nº 7 (2023)
- Páginas: 867-876
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/136350
- DOI: https://doi.org/10.31857/S0044457X22602231
- EDN: https://elibrary.ru/RHUWEQ
- ID: 136350
Citar
Resumo
CeO2 nanooxide has been synthesized from cerium(III) nitrate using powdered cellulose (PC) and its mixture with sucrose as templates. The removal of templates from composites (PC–Ce(NO3)3 and PC–sucrose–Ce(NO3)3) has been carried out in two ways: via direct burning-out of PC (PC–sucrose) in an air flow and via burning-out of the carbonizate after template pyrolysis. Using UV and IR spectroscopy, X-ray powder diffraction (XRD), and electron microscopy, the influence of the template composition and the method of its removal on the physicochemical characteristics of CeO2 nanoparticles has been studied. A carbon–oxide material CeO2/C has been synthesized by pyrolysis of PC–Ce(NO3)3 and PC–sucrose–Ce(NO3)3 composites. It has been established that the pyrolysis of PC–Ce(NO3)3 and PC–sucrose–Ce(NO3)3 leads to the formation, in the carbonizate, of CeO2 (cerianite) nanoparticles with sizes of 3–4 and 1–2.5 nm, respectively. The average diameter of nanoparticles (according to XRD data) is 3.8 and 2.3 nm. CeO2/C synthesized from the PC–sucrose–Ce(NO3)3 composite contains cerium(III) oxide. All CeO2 nanoparticles in the carbon matrix have a hydroxyl–hydrate cover. The burning of the organic or carbon matrix of the composites leads, regardless of the template used and synthesis conditions, to the formation of CeO2 (cerianite) nanoparticles with the same average diameter of 25 ± 1 nm (according to XRD data), containing an admixture of the Ce(III) phase and having a hydroxyl–hydrate cover. Carbon is present in the material in trace amounts (≤0.15 wt %). The size scatter of CeO2 nanoparticles produced by burning out PC from the PC–Ce(NO3)3 composite is 15–30 nm. In those cases when the organic component from PC–sucrose–Ce(NO3)3 is subjected to burning or the pyrolysis stage of both composites is included in the synthesis process, the appearance of a fraction of larger CeO2 particles (50–60 nm) is observed. The correctness of the obtained data has been confirmed in the course of the model process of hydrogen peroxide decomposition.
Palavras-chave
Sobre autores
A. Shishmakov
Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
Email: Mikushina@ios.uran.ru
620108, Yekaterinburg, Russia
Yu. Mikushina
Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
Email: Mikushina@ios.uran.ru
620108, Yekaterinburg, Russia
O. Koryakova
Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: Mikushina@ios.uran.ru
Synthesis of CeO2 and CeO2/C Using Powdered Cellulose and Powdered Cellulose–Sucrose as a Template
Bibliografia
- Scire S., Palmisano L. // Cerium Oxide (CeO2): Synthesis, Properties and Applications. 2019. 402 p.
- Исаева Е.И., Гурьев Н.В., Бойцова Т.Б. и др. // Журн. общ. химии. 2022. Т. 92. № 10. С. 1603. https://doi.org/10.31857/S0044460X22100110
- Sozarukova M.M., Proskurnina E.V., Popov A.L. et al. // RSC Adv. 2021. V. 11. № 56. P. 35351. https://doi.org/10.1039/d1ra06730c
- Abramova A.V., Abramov V.O., Fedulov I.S. et al. // Nanomaterials. 2021. V. 11. № 10. P. 2704. https://doi.org/10.3390/nano11102704
- Sozarukova M.M., Proskurnina E.V., Ivanov V.K. // Nanosyst. Phys. Chem. Math. 2021. V. 12. P. 283. https://doi.org/10.17586/2220-8054-2021-12-3-283-290
- Popov A.L., Andreeva V.V., Khohlov N.V. et al. // Nanosyst. Phys. Chem. Math. 2021. V. 12. P. 329. https://doi.org/10.17586/2220-8054-2021-12-3-329-335
- Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. // Polymers. 2021. V. 13. P. 924. https://doi.org/10.3390/polym13060924
- Popov A.L., Kolmanovich D.D., Popova N.R. et al. // Nanosyst: Phys. Chem. Math. 2022. V. 13. № 1. P. 96. https://doi.org/10.17586/2220-8054-2022-13-1-96-103
- Кузнецова М.Н., Жилкина В.Ю. // Фармацевтическое дело и технология лекарств. 2021. № 2. С. 38. https://doi.org/10.33920/med-13-2102-02
- Щербаков А.Б., Иванова О.С., Спивак Н.Я. и др. // Синтез и биомедицинские применения нанодисперсного диоксида церия. Томск: Изд. дом ТГУ, 2016. 476 с.
- Масленников Д.В., Матвиенко А.А., Сидельников А.А. и др. // Химия в интересах устойчивого развития. 2019. № 3. С. 323. https://doi.org/10.15372/KhUR2019141
- Huang J.-J., Wang C.-C., Jin L.-T. et al. // Transactions of Nonferrous Metals Society of China. 2017. V. 27. № 3. P. 578. https://doi.org/10.1016/S1003-6326(17)60064-5
- Moyer K., Conklin D.R., Mukarakate C. et al. // Front. Chem. 2019. V. 7. P. 730. https://doi.org/10.3389/fchem.2019.00730
- Волков А.А., Бойцова Т.Б., Стожаров В.М. и др. // Журн. общ. химии. 2020. Т. 90. № 2. С. 308. https://doi.org/10.31857/S0044460X20020183
- Kaplin I.Y., Lokteva E.S., Golubina E.V. et al. // Molecules. 2020. V. 25. P. 4242. https://doi.org/10.3390/molecules25184242
- Фролова Л.А., Леонова Л.С., Арсланова А.А. и др. // Электрохимия. 2013. Т. 49. № 8. С. 915. https://doi.org/10.7868/S0424857013080082
- Кибис Л.С., Коробова А.Н., Федорова Е.А. и др. // Журн. структур. химии. 2022. Т. 63. № 3. С. 311. https://doi.org/10.26902/JSC_id89211
- Шишмаков А.Б., Микушина Ю.В., Корякова О.В. // Хим. технология. 2022. Т. 23. № 7. С. 290. https://doi.org/10.31044/1684-5811-2022-23-7-290-296
- Babitha K.K., Sreedevi A., Priyanka K.P. et al. // Ind. J. Pure Appl. Phys. 2015. V. 53. № 9. P. 596. https://doi.org/10.56042/ijpap.v53i9.5542
- Hu Z., Haneklaus S., Sparovek G. et al. // Commun. Soil. Sci. Plant. Anal. 2006. V. 37. № 9–10. P. 1381. https://doi.org/10.1080/00103620600628680
- Стоянов А.О., Стоянова И.В., Чивирева Н.А. и др. // Методы и объекты хим. анализа. 2013. Т. 8. № 3. С. 104.
- Халипова О.С. Технология получения оксидных систем СeO2–SiO2 и СeO2–SnO2 в тонкопленочном и дисперсном состояниях из пленкообразующих растворов и их свойства. Автореф. диc. … канд. техн. наук. Томск, 2014. 22 с.
- Земскова Л.А., Егорин А.М., Токарь Э.А. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1168. https://doi.org/10.31857/S0044457X21090178
- Кравцов А.А., Блинов А.В., Ясная М.А. и др. // Вестн. Самар. гос. техн. ун-та. Сер. техн. науки. 2015. Т. 47. № 3. С. 208.
- Кравцов А.А. Разработка процессов получения и исследование физико-химических свойств наноматериалов для электронной техники на основе оксидов титана и церия. Дис. … канд. техн. наук. Ставрополь, 2016. 186 с.
- Pang J.-H., Liu Y., Li J. et al. // Rare Met. 2019. V. 38. № 1. P. 73. https://doi.org/10.1007/s12598-018-1072-4
- Singh R.D., Koli P.B., Jagdale B.S. et al. // SN Appl. Sci. 2019. № 1. P. 315. https://doi.org/10.1007/s42452-019-0246-5
- Abid S.A., Taha A.A., Ismail R.A. et al. // Envir. Sci. Poll. Res. 2020. V. 27. P. 30479. https://doi.org/10.1007/s11356-020-09332-9
- Farahmandjou M., Zarinkamar M., Firoozabadi T.P. // Rev. Mex. Fis. 2016. V. 62. P. 496.
- Ayodele B.V., Khan M.R., Cheng C.K. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 210. https://doi.org/10.9767/bcrec.11.2.552.210-219
- Calvache-Muñoz J., Prado F.A., Rodríguez-Páez J.E. // Colloids. Surf., A. 2017. V. 529. P. 146. https://doi.org/10.1016/j.colsurfa.2017.05.059
- Dezfuli A.S., Ganjali M.R., Naderi H.R. et al. // RSC Adv. 2015. V. 5. № 57. P. 46050. https://doi.org/10.1039/C5RA02957K
- Saranya J., Sreeja B.S., Padmalaya G. et al. // J. Inorg. Organomet. Polym. Mater. 2019. № 30. P. 1. https://doi.org/10.1007/s10904-019-01403-w
- Syed Khadar Y.A., Balamurugan A., Devarajan V.P. et al. // Orient. J. Chem. 2017. V. 33. № 5. P. 2405. https://doi.org/10.13005/ojc/330533
- Бажукова И.Н., Мышкина А.В., Соковнин С.Ю. и др. // Физ. тв. тела. 2019. Т. 61. № 5. С. 974.
- Abakshonok A.V., Kvasyuk A.A., Eryomin A.N. et al. // Proc. Natl. Acad. Sci. Belarus. Chem. series. 2017. V. 3. P. 7.
Arquivos suplementares
