Синтез CeO2 и CeO2/C с использованием в качестве темплата порошковой целлюлозы и порошковой целлюлозы-сахарозы

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Проведен синтез нанооксида CeO2 из нитрата церия(III) с использованием в качестве темплатов порошковой целлюлозы (ПЦ) и ее смеси с сахарозой. Удаление темплатов из композитов (ПЦ-Ce(NO3)3 и ПЦ-сахароза-Ce(NO3)3) осуществляли двумя способами: непосредственным выжиганием ПЦ (ПЦ-сахароза) в токе воздуха и выжиганием карбонизата после пиролиза темплатов. Методами УФ- и ИК-спектроскопии, рентгенофазового анализа (РФА) и электронной микроскопии исследовано влияние состава темплата и способа его удаления на физико-химические характеристики наночастиц CeO2. Пиролизом композитов ПЦ-Ce(NO3)3 и ПЦ-сахароза-Ce(NO3)3 синтезирован углерод-оксидный материал CeO2/C. Установлено, что при пиролизе ПЦ-Ce(NO3)3 и ПЦ-сахароза-Ce(NO3)3 в карбонизате формируются наночастицы CeO2 (церианит) с размерами 3–4 и 1–2.5 нм соответственно. Средний диаметр наночастиц (по данным РФА) составляет 3.8 и 2.3 нм. В CeO2/C, синтезированном из композита ПЦ-сахароза-Ce(NO3)3, фиксируется присутствие оксида церия(III). Все наночастицы CeO2 в углеродной матрице имеют гидроксильно-гидратный покров. Выжигание органической или углеродной матрицы композитов приводит, вне зависимости от используемого темплата и условий синтеза, к формированию наночастиц CeO2 (церианит) с одинаковым средним диаметром 25 ± 1 нм (по данным РФА), содержащих примесь фазы Ce(III) и обладающих гидроксильно-гидратным покровом. Углерод в материале присутствует в следовых количествах (≤0.15 вес. %). Разброс наночастиц CeO2 по размерам при выжигании ПЦ из композита ПЦ-Ce(NO3)3 составляет 15–30 нм. В тех случаях, когда выжиганию подвергается органическая составляющая из ПЦ-сахароза-Ce(NO3)3 или в процесс синтеза включается стадия пиролиза обоих композитов, наблюдается появление фракции более крупных частиц CeO2 (50–60 нм). Корректность полученных данных подтверждена в ходе модельного процесса распада пероксида водорода.

About the authors

А. Шишмаков

Институт органического синтеза им. И.Я. Постовского УрО РАН

Email: Mikushina@ios.uran.ru
Россия, 620108, Екатеринбург, ул. С. Ковалевской, 22/20

Ю. Микушина

Институт органического синтеза им. И.Я. Постовского УрО РАН

Author for correspondence.
Email: Mikushina@ios.uran.ru
Россия, 620108, Екатеринбург, ул. С. Ковалевской, 22/20

О. Корякова

Институт органического синтеза им. И.Я. Постовского УрО РАН

Email: Mikushina@ios.uran.ru
Россия, 620108, Екатеринбург, ул. С. Ковалевской, 22/20

References

  1. Scire S., Palmisano L. // Cerium Oxide (CeO2): Synthesis, Properties and Applications. 2019. 402 p.
  2. Исаева Е.И., Гурьев Н.В., Бойцова Т.Б. и др. // Журн. общ. химии. 2022. Т. 92. № 10. С. 1603. https://doi.org/10.31857/S0044460X22100110
  3. Sozarukova M.M., Proskurnina E.V., Popov A.L. et al. // RSC Adv. 2021. V. 11. № 56. P. 35351. https://doi.org/10.1039/d1ra06730c
  4. Abramova A.V., Abramov V.O., Fedulov I.S. et al. // Nanomaterials. 2021. V. 11. № 10. P. 2704. https://doi.org/10.3390/nano11102704
  5. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. // Nanosyst. Phys. Chem. Math. 2021. V. 12. P. 283. https://doi.org/10.17586/2220-8054-2021-12-3-283-290
  6. Popov A.L., Andreeva V.V., Khohlov N.V. et al. // Nanosyst. Phys. Chem. Math. 2021. V. 12. P. 329. https://doi.org/10.17586/2220-8054-2021-12-3-329-335
  7. Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. // Polymers. 2021. V. 13. P. 924. https://doi.org/10.3390/polym13060924
  8. Popov A.L., Kolmanovich D.D., Popova N.R. et al. // Nanosyst: Phys. Chem. Math. 2022. V. 13. № 1. P. 96. https://doi.org/10.17586/2220-8054-2022-13-1-96-103
  9. Кузнецова М.Н., Жилкина В.Ю. // Фармацевтическое дело и технология лекарств. 2021. № 2. С. 38. https://doi.org/10.33920/med-13-2102-02
  10. Щербаков А.Б., Иванова О.С., Спивак Н.Я. и др. // Синтез и биомедицинские применения нанодисперсного диоксида церия. Томск: Изд. дом ТГУ, 2016. 476 с.
  11. Масленников Д.В., Матвиенко А.А., Сидельников А.А. и др. // Химия в интересах устойчивого развития. 2019. № 3. С. 323. https://doi.org/10.15372/KhUR2019141
  12. Huang J.-J., Wang C.-C., Jin L.-T. et al. // Transactions of Nonferrous Metals Society of China. 2017. V. 27. № 3. P. 578. https://doi.org/10.1016/S1003-6326(17)60064-5
  13. Moyer K., Conklin D.R., Mukarakate C. et al. // Front. Chem. 2019. V. 7. P. 730. https://doi.org/10.3389/fchem.2019.00730
  14. Волков А.А., Бойцова Т.Б., Стожаров В.М. и др. // Журн. общ. химии. 2020. Т. 90. № 2. С. 308. https://doi.org/10.31857/S0044460X20020183
  15. Kaplin I.Y., Lokteva E.S., Golubina E.V. et al. // Molecules. 2020. V. 25. P. 4242. https://doi.org/10.3390/molecules25184242
  16. Фролова Л.А., Леонова Л.С., Арсланова А.А. и др. // Электрохимия. 2013. Т. 49. № 8. С. 915. https://doi.org/10.7868/S0424857013080082
  17. Кибис Л.С., Коробова А.Н., Федорова Е.А. и др. // Журн. структур. химии. 2022. Т. 63. № 3. С. 311. https://doi.org/10.26902/JSC_id89211
  18. Шишмаков А.Б., Микушина Ю.В., Корякова О.В. // Хим. технология. 2022. Т. 23. № 7. С. 290. https://doi.org/10.31044/1684-5811-2022-23-7-290-296
  19. Babitha K.K., Sreedevi A., Priyanka K.P. et al. // Ind. J. Pure Appl. Phys. 2015. V. 53. № 9. P. 596. https://doi.org/10.56042/ijpap.v53i9.5542
  20. Hu Z., Haneklaus S., Sparovek G. et al. // Commun. Soil. Sci. Plant. Anal. 2006. V. 37. № 9–10. P. 1381. https://doi.org/10.1080/00103620600628680
  21. Стоянов А.О., Стоянова И.В., Чивирева Н.А. и др. // Методы и объекты хим. анализа. 2013. Т. 8. № 3. С. 104.
  22. Халипова О.С. Технология получения оксидных систем СeO2–SiO2 и СeO2–SnO2 в тонкопленочном и дисперсном состояниях из пленкообразующих растворов и их свойства. Автореф. диc. … канд. техн. наук. Томск, 2014. 22 с.
  23. Земскова Л.А., Егорин А.М., Токарь Э.А. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1168. https://doi.org/10.31857/S0044457X21090178
  24. Кравцов А.А., Блинов А.В., Ясная М.А. и др. // Вестн. Самар. гос. техн. ун-та. Сер. техн. науки. 2015. Т. 47. № 3. С. 208.
  25. Кравцов А.А. Разработка процессов получения и исследование физико-химических свойств наноматериалов для электронной техники на основе оксидов титана и церия. Дис. … канд. техн. наук. Ставрополь, 2016. 186 с.
  26. Pang J.-H., Liu Y., Li J. et al. // Rare Met. 2019. V. 38. № 1. P. 73. https://doi.org/10.1007/s12598-018-1072-4
  27. Singh R.D., Koli P.B., Jagdale B.S. et al. // SN Appl. Sci. 2019. № 1. P. 315. https://doi.org/10.1007/s42452-019-0246-5
  28. Abid S.A., Taha A.A., Ismail R.A. et al. // Envir. Sci. Poll. Res. 2020. V. 27. P. 30479. https://doi.org/10.1007/s11356-020-09332-9
  29. Farahmandjou M., Zarinkamar M., Firoozabadi T.P. // Rev. Mex. Fis. 2016. V. 62. P. 496.
  30. Ayodele B.V., Khan M.R., Cheng C.K. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 210. https://doi.org/10.9767/bcrec.11.2.552.210-219
  31. Calvache-Muñoz J., Prado F.A., Rodríguez-Páez J.E. // Colloids. Surf., A. 2017. V. 529. P. 146. https://doi.org/10.1016/j.colsurfa.2017.05.059
  32. Dezfuli A.S., Ganjali M.R., Naderi H.R. et al. // RSC Adv. 2015. V. 5. № 57. P. 46050. https://doi.org/10.1039/C5RA02957K
  33. Saranya J., Sreeja B.S., Padmalaya G. et al. // J. Inorg. Organomet. Polym. Mater. 2019. № 30. P. 1. https://doi.org/10.1007/s10904-019-01403-w
  34. Syed Khadar Y.A., Balamurugan A., Devarajan V.P. et al. // Orient. J. Chem. 2017. V. 33. № 5. P. 2405. https://doi.org/10.13005/ojc/330533
  35. Бажукова И.Н., Мышкина А.В., Соковнин С.Ю. и др. // Физ. тв. тела. 2019. Т. 61. № 5. С. 974.
  36. Abakshonok A.V., Kvasyuk A.A., Eryomin A.N. et al. // Proc. Natl. Acad. Sci. Belarus. Chem. series. 2017. V. 3. P. 7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (211KB)
3.

Download (103KB)
4.

Download (1MB)
5.

Download (238KB)
6.

Download (161KB)
7.

Download (218KB)
8.

Download (100KB)

Copyright (c) 2023 А.Б. Шишмаков, Ю.В. Микушина, О.В. Корякова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies