Stability of Colloidal Silver Sulfide Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stable colloidal solutions of silver sulfide Ag2S quantum dots of various sizes were prepared by hydrochemical bath deposition from low-concentration aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate. The Ag2S quantum dot sizes determined by dynamic light scattering (DLS) were 2–3 to 28–30 nm. The great negative values of the measured ζ-potentials of the colloidal solutions and the small changes in ζ-potential and quantum dot sizes upon the long-term storage of the solutions indicate their stability across time.

About the authors

S. I. Sadovnikov

Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: sadovnikov@ihim.uran.ru
620990, Yekaterinburg, Russia

References

  1. Садовников С.И., Ремпель А.А., Гусев А.И. // Успехи химии. 2018. Т. 87. № 4. С. 303. https://doi.org/10.1070/RCR4803locatt=label:RUSSIAN
  2. Meherzi-Maghraoui H., Dachraoui M., Belgacem S. et al. // Thin Solid Films. 1996. V. 288. P. 217. https://doi.org/10.1016/S0040-6090(96)08811-6
  3. Nasrallah T.B., Dlala H., Amlouk M. et al. // Synth. Met. 2005. V. 151. P. 225. https://doi.org/10.1016/j.synthmet.2005.05.005
  4. Karashanova D., Nihtianova D., Starbova K., Starbov N. // Solid State Ionics. 2004. V. 171. P. 269. https://doi.org/10.1016/j.ssi.2004.04.020
  5. El-Nahass M.M., Farag A.A.M., Ibrahim E.M., Abd-El-Rahman S. // Vacuum. 2004. V. 72. P. 453. https://doi.org/10.1016/j.vacuum.2003.10.005
  6. Prabhune V.B., Shinde N.S., Fulari V.J. // Appl. Surf. Sci. 2008. V. 255. Part 1. P. 1819. https://doi.org/10.1016/j.apsusc.2008.06.022
  7. Terabe K., Hasegawa T., Nakayama T., Aono M. // Nature. 2005. V. 433. P. 47. https://doi.org/10.1038/nature03190
  8. Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
  9. Xu Z., Bando Y., Wang W. et al. // ACS Nano. 2010. V. 4. P. 2515. https://doi.org/10.1021/nn100483a
  10. Gubicza A., Csontos M., Halbritter A., Mihály G. // Nanoscale. 2015. V. 7. P. 4394. https://doi.org/10.1039/C5NR00399G
  11. Jiang P., Zhu C.-N., Zhang Z.-L. et al. // Biomaterials. 2012. V. 33. P. 5130. https://doi.org/10.1016/j.biomaterials.2012.03.059
  12. Li C., Zhang Y., Wang M. et al. // Biomaterials. 2014. V. 35. P. 393. https://doi.org/10.1016/j.biomaterials.2013.10.010
  13. Yang H.-Y., Zhao Y.-W., Zhang Z.-Y. et al. // Nanotechnology. 2013. V. 24. P. 055706. https://doi.org/10.1088/0957-4484/24/5/055706
  14. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rem-pel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. https://doi.org/10.1016/j.cplett.2015.11.004
  15. Садовников С.И. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1116. https://doi.org/10.1134/S0044457X19100118
  16. Садовников С.И. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1434. https://doi.org/10.31857/S0044457X20100177
  17. Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1975. С. 511.
  18. Ерёмин И.И. // Словарь нанотехнологических терминов / Под ред. Калюжного С.В. М.: Физматлит, 2010. С. 399.
  19. Matusiak J., Grządka E. // Annal. Univer. Mariae Curie-Sklodowska (Lublin, Polonia). 2017. V. 52. P. 34. https://doi.org//10.17951/aa.2017.72.1.33
  20. Садовников С.И., Кузнецова Ю.В., Ремпель А.А. // Неорган. материалы. 2014. Т. 50. № 10. С. 1049. https://doi.org//10.7868/S0002337X14100145
  21. Sadovnikov S.I., Kuznetsova Yu.V., Rempel A.A. // Nano-Struct. Nano-Objects. 2016. V. 7. P. 81. https://doi.org/10.1016/j.nanoso.2016.06.004
  22. Kuznetsova Yu.V., Rempel S.V., Popov I.D. et al. // Colloid. Surf. A: Physicochem. Eng. Aspects. 2017. V. 520. P. 369. https://doi.org/10.1016/j.colsurfa.2017.02.013
  23. Воронцова Е.С., Кузнецова Ю.В., Ремпель С.В. // Физика. Технологии. Инновации: cб. статей VII Междунар. мол. научн. конф. (Екатеринбург, 18–22 мая 2020 г.). Екатеринбург: УрФУ, 2020. С. 339. http://hdl.handle.net/10995/91864
  24. Vorontsova E.S., Kuznetsova Yu.V., Rempel S.V. // AIP Conf. Proc. 2022. V. 2466. P. 030006. https://doi.org/10.1063/5.0088671
  25. Rempel S.V., Kuznetsova Yu.V., Rempel A.A. // ACS Omega. 2020. V. 5. P. 16826. https://doi.org/10.1021/acsomega.0c01994
  26. Kozhevnikova N.S., Vorokh A.S., Shalaeva E.V. et al. // J. Alloys Comp. 2017. V. 712. P. 418. https://doi.org/10.1016/j.jallcom.2017.04.112
  27. Blochet B., Joaquina K., Blum L. et al. // Optica. 2019. V. 6. P. 1554. https://doi.org/10.1364/optica.6.001554
  28. Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. P. 3391. https://doi.org/10.1021/j100214a025
  29. X'Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
  30. Sadovnikov S.I., Gusev A.I., Rempel A.A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 12466. https://doi.org/10.1039/c5cp00650c
  31. Hunter R.J. Zeta Potential in Colloid Science: Principles and Applications. London: Academic, 1988. 386 p.
  32. Heurtault B., Saulnier P., Pech B. et al. // Biomaterials. 2003. V. 24. P. 4283. https://doi.org/10.1016/S0142-9612(03)00331-4
  33. Zhang Y., Liu Y., Li C. et al. // J. Phys. Chem. C. 2014. V. 118. P. 4918. https://doi.org/10.1021/jp501266d
  34. Junod P. // Helv. Phys. Acta. 1959. V. 32. P. 567.
  35. Junod P., Hediger H., Kilchör B., Wullschleger J. // Philos. Mag. B. 1977. V. 36. P. 941. https://doi.org/10.1080/14786437708239769
  36. Wu Q., Zhou M., Gong Y. et al. // Catal. Sci. Technol. 2018. V. 8. P. 5225. https://doi.org//10.1039/c8cy01522h

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (1MB)
4.

Download (160KB)
5.

Download (89KB)
6.

Download (216KB)

Copyright (c) 2023 С.И. Садовников

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».