Stability of Colloidal Silver Sulfide Solutions
- Authors: Sadovnikov S.I.1
-
Affiliations:
- Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences
- Issue: Vol 68, No 3 (2023)
- Pages: 411-418
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.rcsi.science/0044-457X/article/view/136346
- DOI: https://doi.org/10.31857/S0044457X22601559
- EDN: https://elibrary.ru/JDGAXE
- ID: 136346
Cite item
Abstract
Stable colloidal solutions of silver sulfide Ag2S quantum dots of various sizes were prepared by hydrochemical bath deposition from low-concentration aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate. The Ag2S quantum dot sizes determined by dynamic light scattering (DLS) were 2–3 to 28–30 nm. The great negative values of the measured ζ-potentials of the colloidal solutions and the small changes in ζ-potential and quantum dot sizes upon the long-term storage of the solutions indicate their stability across time.
About the authors
S. I. Sadovnikov
Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: sadovnikov@ihim.uran.ru
620990, Yekaterinburg, Russia
References
- Садовников С.И., Ремпель А.А., Гусев А.И. // Успехи химии. 2018. Т. 87. № 4. С. 303. https://doi.org/10.1070/RCR4803locatt=label:RUSSIAN
- Meherzi-Maghraoui H., Dachraoui M., Belgacem S. et al. // Thin Solid Films. 1996. V. 288. P. 217. https://doi.org/10.1016/S0040-6090(96)08811-6
- Nasrallah T.B., Dlala H., Amlouk M. et al. // Synth. Met. 2005. V. 151. P. 225. https://doi.org/10.1016/j.synthmet.2005.05.005
- Karashanova D., Nihtianova D., Starbova K., Starbov N. // Solid State Ionics. 2004. V. 171. P. 269. https://doi.org/10.1016/j.ssi.2004.04.020
- El-Nahass M.M., Farag A.A.M., Ibrahim E.M., Abd-El-Rahman S. // Vacuum. 2004. V. 72. P. 453. https://doi.org/10.1016/j.vacuum.2003.10.005
- Prabhune V.B., Shinde N.S., Fulari V.J. // Appl. Surf. Sci. 2008. V. 255. Part 1. P. 1819. https://doi.org/10.1016/j.apsusc.2008.06.022
- Terabe K., Hasegawa T., Nakayama T., Aono M. // Nature. 2005. V. 433. P. 47. https://doi.org/10.1038/nature03190
- Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
- Xu Z., Bando Y., Wang W. et al. // ACS Nano. 2010. V. 4. P. 2515. https://doi.org/10.1021/nn100483a
- Gubicza A., Csontos M., Halbritter A., Mihály G. // Nanoscale. 2015. V. 7. P. 4394. https://doi.org/10.1039/C5NR00399G
- Jiang P., Zhu C.-N., Zhang Z.-L. et al. // Biomaterials. 2012. V. 33. P. 5130. https://doi.org/10.1016/j.biomaterials.2012.03.059
- Li C., Zhang Y., Wang M. et al. // Biomaterials. 2014. V. 35. P. 393. https://doi.org/10.1016/j.biomaterials.2013.10.010
- Yang H.-Y., Zhao Y.-W., Zhang Z.-Y. et al. // Nanotechnology. 2013. V. 24. P. 055706. https://doi.org/10.1088/0957-4484/24/5/055706
- Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rem-pel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. https://doi.org/10.1016/j.cplett.2015.11.004
- Садовников С.И. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1116. https://doi.org/10.1134/S0044457X19100118
- Садовников С.И. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1434. https://doi.org/10.31857/S0044457X20100177
- Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1975. С. 511.
- Ерёмин И.И. // Словарь нанотехнологических терминов / Под ред. Калюжного С.В. М.: Физматлит, 2010. С. 399.
- Matusiak J., Grządka E. // Annal. Univer. Mariae Curie-Sklodowska (Lublin, Polonia). 2017. V. 52. P. 34. https://doi.org//10.17951/aa.2017.72.1.33
- Садовников С.И., Кузнецова Ю.В., Ремпель А.А. // Неорган. материалы. 2014. Т. 50. № 10. С. 1049. https://doi.org//10.7868/S0002337X14100145
- Sadovnikov S.I., Kuznetsova Yu.V., Rempel A.A. // Nano-Struct. Nano-Objects. 2016. V. 7. P. 81. https://doi.org/10.1016/j.nanoso.2016.06.004
- Kuznetsova Yu.V., Rempel S.V., Popov I.D. et al. // Colloid. Surf. A: Physicochem. Eng. Aspects. 2017. V. 520. P. 369. https://doi.org/10.1016/j.colsurfa.2017.02.013
- Воронцова Е.С., Кузнецова Ю.В., Ремпель С.В. // Физика. Технологии. Инновации: cб. статей VII Междунар. мол. научн. конф. (Екатеринбург, 18–22 мая 2020 г.). Екатеринбург: УрФУ, 2020. С. 339. http://hdl.handle.net/10995/91864
- Vorontsova E.S., Kuznetsova Yu.V., Rempel S.V. // AIP Conf. Proc. 2022. V. 2466. P. 030006. https://doi.org/10.1063/5.0088671
- Rempel S.V., Kuznetsova Yu.V., Rempel A.A. // ACS Omega. 2020. V. 5. P. 16826. https://doi.org/10.1021/acsomega.0c01994
- Kozhevnikova N.S., Vorokh A.S., Shalaeva E.V. et al. // J. Alloys Comp. 2017. V. 712. P. 418. https://doi.org/10.1016/j.jallcom.2017.04.112
- Blochet B., Joaquina K., Blum L. et al. // Optica. 2019. V. 6. P. 1554. https://doi.org/10.1364/optica.6.001554
- Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. P. 3391. https://doi.org/10.1021/j100214a025
- X'Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
- Sadovnikov S.I., Gusev A.I., Rempel A.A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 12466. https://doi.org/10.1039/c5cp00650c
- Hunter R.J. Zeta Potential in Colloid Science: Principles and Applications. London: Academic, 1988. 386 p.
- Heurtault B., Saulnier P., Pech B. et al. // Biomaterials. 2003. V. 24. P. 4283. https://doi.org/10.1016/S0142-9612(03)00331-4
- Zhang Y., Liu Y., Li C. et al. // J. Phys. Chem. C. 2014. V. 118. P. 4918. https://doi.org/10.1021/jp501266d
- Junod P. // Helv. Phys. Acta. 1959. V. 32. P. 567.
- Junod P., Hediger H., Kilchör B., Wullschleger J. // Philos. Mag. B. 1977. V. 36. P. 941. https://doi.org/10.1080/14786437708239769
- Wu Q., Zhou M., Gong Y. et al. // Catal. Sci. Technol. 2018. V. 8. P. 5225. https://doi.org//10.1039/c8cy01522h
Supplementary files
