Стабильность коллоидных растворов сульфида серебра
- Авторы: Садовников С.И.1
-
Учреждения:
- Институт химии твердого тела УрО РАН
- Выпуск: Том 68, № 3 (2023)
- Страницы: 411-418
- Раздел: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.rcsi.science/0044-457X/article/view/136346
- DOI: https://doi.org/10.31857/S0044457X22601559
- EDN: https://elibrary.ru/JDGAXE
- ID: 136346
Цитировать
Аннотация
Гидрохимическим методом в низкоконцентрированных водных растворах нитрата серебра, сульфида натрия и цитрата натрия синтезированы стабильные коллоидные растворы квантовых точек сульфида серебра Ag2S разного размера. Размер квантовых точек Ag2S, определенный методом динамического рассеяния света, составляет от 2–3 до 28–30 нм. Большая отрицательная величина измеренного ζ-потенциала коллоидных растворов и малое изменение ζ-потенциала и размера квантовых точек при длительном хранении растворов свидетельствуют об их временнóй стабильности.
Ключевые слова
Об авторах
С. И. Садовников
Институт химии твердого тела УрО РАН
Автор, ответственный за переписку.
Email: sadovnikov@ihim.uran.ru
Россия, 620990, Екатеринбург, ул. Первомайская, 91
Список литературы
- Садовников С.И., Ремпель А.А., Гусев А.И. // Успехи химии. 2018. Т. 87. № 4. С. 303. https://doi.org/10.1070/RCR4803locatt=label:RUSSIAN
- Meherzi-Maghraoui H., Dachraoui M., Belgacem S. et al. // Thin Solid Films. 1996. V. 288. P. 217. https://doi.org/10.1016/S0040-6090(96)08811-6
- Nasrallah T.B., Dlala H., Amlouk M. et al. // Synth. Met. 2005. V. 151. P. 225. https://doi.org/10.1016/j.synthmet.2005.05.005
- Karashanova D., Nihtianova D., Starbova K., Starbov N. // Solid State Ionics. 2004. V. 171. P. 269. https://doi.org/10.1016/j.ssi.2004.04.020
- El-Nahass M.M., Farag A.A.M., Ibrahim E.M., Abd-El-Rahman S. // Vacuum. 2004. V. 72. P. 453. https://doi.org/10.1016/j.vacuum.2003.10.005
- Prabhune V.B., Shinde N.S., Fulari V.J. // Appl. Surf. Sci. 2008. V. 255. Part 1. P. 1819. https://doi.org/10.1016/j.apsusc.2008.06.022
- Terabe K., Hasegawa T., Nakayama T., Aono M. // Nature. 2005. V. 433. P. 47. https://doi.org/10.1038/nature03190
- Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
- Xu Z., Bando Y., Wang W. et al. // ACS Nano. 2010. V. 4. P. 2515. https://doi.org/10.1021/nn100483a
- Gubicza A., Csontos M., Halbritter A., Mihály G. // Nanoscale. 2015. V. 7. P. 4394. https://doi.org/10.1039/C5NR00399G
- Jiang P., Zhu C.-N., Zhang Z.-L. et al. // Biomaterials. 2012. V. 33. P. 5130. https://doi.org/10.1016/j.biomaterials.2012.03.059
- Li C., Zhang Y., Wang M. et al. // Biomaterials. 2014. V. 35. P. 393. https://doi.org/10.1016/j.biomaterials.2013.10.010
- Yang H.-Y., Zhao Y.-W., Zhang Z.-Y. et al. // Nanotechnology. 2013. V. 24. P. 055706. https://doi.org/10.1088/0957-4484/24/5/055706
- Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rem-pel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. https://doi.org/10.1016/j.cplett.2015.11.004
- Садовников С.И. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1116. https://doi.org/10.1134/S0044457X19100118
- Садовников С.И. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1434. https://doi.org/10.31857/S0044457X20100177
- Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1975. С. 511.
- Ерёмин И.И. // Словарь нанотехнологических терминов / Под ред. Калюжного С.В. М.: Физматлит, 2010. С. 399.
- Matusiak J., Grządka E. // Annal. Univer. Mariae Curie-Sklodowska (Lublin, Polonia). 2017. V. 52. P. 34. https://doi.org//10.17951/aa.2017.72.1.33
- Садовников С.И., Кузнецова Ю.В., Ремпель А.А. // Неорган. материалы. 2014. Т. 50. № 10. С. 1049. https://doi.org//10.7868/S0002337X14100145
- Sadovnikov S.I., Kuznetsova Yu.V., Rempel A.A. // Nano-Struct. Nano-Objects. 2016. V. 7. P. 81. https://doi.org/10.1016/j.nanoso.2016.06.004
- Kuznetsova Yu.V., Rempel S.V., Popov I.D. et al. // Colloid. Surf. A: Physicochem. Eng. Aspects. 2017. V. 520. P. 369. https://doi.org/10.1016/j.colsurfa.2017.02.013
- Воронцова Е.С., Кузнецова Ю.В., Ремпель С.В. // Физика. Технологии. Инновации: cб. статей VII Междунар. мол. научн. конф. (Екатеринбург, 18–22 мая 2020 г.). Екатеринбург: УрФУ, 2020. С. 339. http://hdl.handle.net/10995/91864
- Vorontsova E.S., Kuznetsova Yu.V., Rempel S.V. // AIP Conf. Proc. 2022. V. 2466. P. 030006. https://doi.org/10.1063/5.0088671
- Rempel S.V., Kuznetsova Yu.V., Rempel A.A. // ACS Omega. 2020. V. 5. P. 16826. https://doi.org/10.1021/acsomega.0c01994
- Kozhevnikova N.S., Vorokh A.S., Shalaeva E.V. et al. // J. Alloys Comp. 2017. V. 712. P. 418. https://doi.org/10.1016/j.jallcom.2017.04.112
- Blochet B., Joaquina K., Blum L. et al. // Optica. 2019. V. 6. P. 1554. https://doi.org/10.1364/optica.6.001554
- Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. P. 3391. https://doi.org/10.1021/j100214a025
- X'Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
- Sadovnikov S.I., Gusev A.I., Rempel A.A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 12466. https://doi.org/10.1039/c5cp00650c
- Hunter R.J. Zeta Potential in Colloid Science: Principles and Applications. London: Academic, 1988. 386 p.
- Heurtault B., Saulnier P., Pech B. et al. // Biomaterials. 2003. V. 24. P. 4283. https://doi.org/10.1016/S0142-9612(03)00331-4
- Zhang Y., Liu Y., Li C. et al. // J. Phys. Chem. C. 2014. V. 118. P. 4918. https://doi.org/10.1021/jp501266d
- Junod P. // Helv. Phys. Acta. 1959. V. 32. P. 567.
- Junod P., Hediger H., Kilchör B., Wullschleger J. // Philos. Mag. B. 1977. V. 36. P. 941. https://doi.org/10.1080/14786437708239769
- Wu Q., Zhou M., Gong Y. et al. // Catal. Sci. Technol. 2018. V. 8. P. 5225. https://doi.org//10.1039/c8cy01522h
Дополнительные файлы
