Synthesis of Hydroxylapatite Substituted with REE Ions (La3+ and Y3+): Composition, Structure, and Properties

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Substituted hydroxylapatites (HAs) containing various La3+ or Y3+ percentages were prepared. X‑ray powder diffraction, Four-transform IR spectroscopy, and optical spectroscopy verified the formation of substituted hydroxylapatites (La–HA and Y–HA). Inductively coupled plasma atomic emission spectrometry (ICP–AES) verified the presence of REE ions in the solids. Changes in the unit cell parameters of the prepared phases indicated that the REE ions substituted for Ca2+ ions in the hydroxylapatite structure. The lanthanum or yttrium percentage in precipitates increased in response to increasing REE salt concentration (within 1–5 wt %) in the initial solution as shown by chemical analysis; this brought about a decrease in the ratio Ca/P compared to the stoichiometric ratio (1.67). The solubility of the synthesized samples was studied, and it appeared that the cation-substituted hydroxylapatites were less soluble than undoped HA was.

About the authors

O. A. Golovanova

Omsk State University

Author for correspondence.
Email: golovanoa2000@mail.ru
644077, Omsk, Russia

References

  1. Kulwinder K., Singh K.J., Anand V. et al. // Ceram. Int. 2017. V. 43. P. 10097. https://doi.org/10.1016/j.ceramint.2017.05.029
  2. Wieszczycka K., Staszak K., Woźniak-Budych et al. // Coord. Chem. Rev. 2019. V. 388. P. 248. https://doi.org/10.1016/j.ccr.2019.06.017
  3. Szcześ A., Hołysz L., Chibowski E. // Adv. Coll. Interface Sci. 2017. V. 249. P. 321. https://doi.org/10.1016/j.cis.2017.04.007
  4. Furasova A.D., Fakhardo A.F., Milichkoet V.A. et al. // Colloids Surf., B: Biointerfaces. 2017. V. 154. P. 21. https://doi.org/10.1016/j.colsurfb.2017.02.029
  5. Sherstiuk A.A., Tsymbal S.A., Fakhardo A.F. et al. // ACS Biomater. Sci. Eng. 2021. V. 7. P. 5633. https://doi.org/10.1021/acsbimaterials.1c00973
  6. Vasylechko V.O., Gryshchouk G.V., Zakordonskiy V.P. et al. // Talanta. 2017. V. 162. P. 1. https://doi.org/10.1016/j.talanta.2017.06.052
  7. Shen C., Yan T., Wang Y. et al. // J. Lumin. 2017. V. 10. P. 1. https://doi.org/10.1016/j.jlumin.2016.12.018
  8. Boronat C., Rivera T., Garcia-Guinea J. et al. // Radiat. Phys. Chem. 2017. V. 130. P. 236. https://doi.org/10.1016/j.radphyschem.2016.09.005
  9. George S., Mehta D., Saharan V.K. // Rev. Chem. Eng. 2020. V. 36. P. 369. https://doi.org/10.1515/revce-2017-0101
  10. Machadoa T.R., Sczancoskia J.C., Beltrán-Mirb H. et al. // Ceram. Int. 2018. V. 44. P. 236. https://doi.org/10.1016/j.ceramint.2017.09.164
  11. Kazin P.E., Pogosova M.A., Trusov L.A. et al. // J. Solid-State Chem. 2016. V. 237. P. 349. https://doi.org/10.1016/j.jssc.2016.03.004
  12. Nasiri N., Clarke C. // National Library of Medicine. 2019. V. 9. P. 449. https://doi.org/10.3390/bios9010043
  13. Шашкина. Г.А., Сорец В.Ф. // Медицина экстремальных ситуаций. 2017. № 1. С. 101.
  14. Guoqing Ma. // Mater. Sci. Eng. 2018. V. 688. P. 1. https://doi.org/10.1088/1757-899X/688/3/033057
  15. Zheng X., Liu M., Hui J. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 20301. https://doi.org/10.1039/c5cp01845e
  16. Ardanova L.I., Get’man E.I., Loboda S.N. et al. // Inorg. Chem. 2010. V. 49. P. 10687. https://doi.org/10.1021/ic1015127
  17. Neacsu I.A., Stoica A.E., Vasile B.S. et al. // Nanomaterials. 2019. V. 9. P. 239. https://doi.org/10.3390/nano9020239
  18. Никитина Ю.О., Петракова Н.В., Демина А.Ю. и др. // Журн. неорган. химии. 2021. Т. 66. С. 951. https://doi.org/10.31857/S0044457X21080171
  19. Cawthray J.F., Creagh A.L., Haynes C.A. et al. // Inorg. Chem. 2015. V. 54. P. 1440. https://doi.org/10.1021/ic502425e
  20. Sathishkumar G.D., Karthika A.S. et al. // Ind. Eng. Chem. Res. 2014. V. 53. P. 20145. https://doi.org/10.1021/ie504387k
  21. Солоненко А.П., Голованова О.А. // Журн. неорган. химии. 2014. Т. 59. С. 12. https://doi.org/10.7868/S0044457X14010188
  22. Егоров-Тисменко Ю.К. Кристаллография и кристаллохимия. М., 2014. 588 с.
  23. Томпсон М., Уолш Д.Н. Руководство по спектрометрическому анализу с индуктивно-связанной плазмой. М.: Недра, 1988. 174 с.
  24. Tsyganova A.A., Golovanova O.A. // Inorg. Mater. 2019. V. 55. № 11. P. 1156. https://doi.org/10.1134/S0020168519110141
  25. Урусов В.С., Еремин Н.Н. Кристаллохимия. М.: Изд-во Моск. ун-та, 2005. 125 с.
  26. Tite T., Popa A.C., Balescu L.M. et al. // Materials. 2018. V. 11. P. 2081. https://doi.org/10.3390/ma11112081
  27. Голованова О.А. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 302. https://doi.org/10.31857/S0044457X20030046

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (89KB)
3.

Download (93KB)
4.

Download (2MB)
5.

Download (163KB)
6.

Download (146KB)

Copyright (c) 2023 О.А. Голованова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies