Синтез гидроксиапатита, замещенного ионами РЗЭ (La3+, Y3+), состав, структура и свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выполнен синтез замещенного гидроксиапатита (ГА) с различным содержанием ионов La3+ и Y3+. Методами РФА, ИК-Фурье- и оптической спектроскопии доказано образование замещенного гидроксиапатита (La–ГА, Y–ГА). При помощи атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой доказано присутствие ионов РЗЭ в твердых фазах. Выявлено изменение параметров кристаллических решеток синтезированных фаз, что свидетельствует о замещении ионов Ca2+ на ионы РЗЭ в структуре гидроксиапатита. Методом химического анализа установлено, что с увеличением концентрации солей лантана и иттрия (1–5 мас. %) в исходном растворе их содержание в осадках растет, это приводит к уменьшению отношения Ca/P по сравнению со стехиометрическим, равным 1.67. При изучении растворимости синтезированных образцов выявлено, что катионзамещенные гидроксиапатиты менее растворимы, чем нелегированный ГА.

Об авторах

О. А. Голованова

Омский государственный университет им. Ф.М. Достоевского

Автор, ответственный за переписку.
Email: golovanoa2000@mail.ru
Россия, 644077, Омск, пр-т Мира, 55а

Список литературы

  1. Kulwinder K., Singh K.J., Anand V. et al. // Ceram. Int. 2017. V. 43. P. 10097. https://doi.org/10.1016/j.ceramint.2017.05.029
  2. Wieszczycka K., Staszak K., Woźniak-Budych et al. // Coord. Chem. Rev. 2019. V. 388. P. 248. https://doi.org/10.1016/j.ccr.2019.06.017
  3. Szcześ A., Hołysz L., Chibowski E. // Adv. Coll. Interface Sci. 2017. V. 249. P. 321. https://doi.org/10.1016/j.cis.2017.04.007
  4. Furasova A.D., Fakhardo A.F., Milichkoet V.A. et al. // Colloids Surf., B: Biointerfaces. 2017. V. 154. P. 21. https://doi.org/10.1016/j.colsurfb.2017.02.029
  5. Sherstiuk A.A., Tsymbal S.A., Fakhardo A.F. et al. // ACS Biomater. Sci. Eng. 2021. V. 7. P. 5633. https://doi.org/10.1021/acsbimaterials.1c00973
  6. Vasylechko V.O., Gryshchouk G.V., Zakordonskiy V.P. et al. // Talanta. 2017. V. 162. P. 1. https://doi.org/10.1016/j.talanta.2017.06.052
  7. Shen C., Yan T., Wang Y. et al. // J. Lumin. 2017. V. 10. P. 1. https://doi.org/10.1016/j.jlumin.2016.12.018
  8. Boronat C., Rivera T., Garcia-Guinea J. et al. // Radiat. Phys. Chem. 2017. V. 130. P. 236. https://doi.org/10.1016/j.radphyschem.2016.09.005
  9. George S., Mehta D., Saharan V.K. // Rev. Chem. Eng. 2020. V. 36. P. 369. https://doi.org/10.1515/revce-2017-0101
  10. Machadoa T.R., Sczancoskia J.C., Beltrán-Mirb H. et al. // Ceram. Int. 2018. V. 44. P. 236. https://doi.org/10.1016/j.ceramint.2017.09.164
  11. Kazin P.E., Pogosova M.A., Trusov L.A. et al. // J. Solid-State Chem. 2016. V. 237. P. 349. https://doi.org/10.1016/j.jssc.2016.03.004
  12. Nasiri N., Clarke C. // National Library of Medicine. 2019. V. 9. P. 449. https://doi.org/10.3390/bios9010043
  13. Шашкина. Г.А., Сорец В.Ф. // Медицина экстремальных ситуаций. 2017. № 1. С. 101.
  14. Guoqing Ma. // Mater. Sci. Eng. 2018. V. 688. P. 1. https://doi.org/10.1088/1757-899X/688/3/033057
  15. Zheng X., Liu M., Hui J. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 20301. https://doi.org/10.1039/c5cp01845e
  16. Ardanova L.I., Get’man E.I., Loboda S.N. et al. // Inorg. Chem. 2010. V. 49. P. 10687. https://doi.org/10.1021/ic1015127
  17. Neacsu I.A., Stoica A.E., Vasile B.S. et al. // Nanomaterials. 2019. V. 9. P. 239. https://doi.org/10.3390/nano9020239
  18. Никитина Ю.О., Петракова Н.В., Демина А.Ю. и др. // Журн. неорган. химии. 2021. Т. 66. С. 951. https://doi.org/10.31857/S0044457X21080171
  19. Cawthray J.F., Creagh A.L., Haynes C.A. et al. // Inorg. Chem. 2015. V. 54. P. 1440. https://doi.org/10.1021/ic502425e
  20. Sathishkumar G.D., Karthika A.S. et al. // Ind. Eng. Chem. Res. 2014. V. 53. P. 20145. https://doi.org/10.1021/ie504387k
  21. Солоненко А.П., Голованова О.А. // Журн. неорган. химии. 2014. Т. 59. С. 12. https://doi.org/10.7868/S0044457X14010188
  22. Егоров-Тисменко Ю.К. Кристаллография и кристаллохимия. М., 2014. 588 с.
  23. Томпсон М., Уолш Д.Н. Руководство по спектрометрическому анализу с индуктивно-связанной плазмой. М.: Недра, 1988. 174 с.
  24. Tsyganova A.A., Golovanova O.A. // Inorg. Mater. 2019. V. 55. № 11. P. 1156. https://doi.org/10.1134/S0020168519110141
  25. Урусов В.С., Еремин Н.Н. Кристаллохимия. М.: Изд-во Моск. ун-та, 2005. 125 с.
  26. Tite T., Popa A.C., Balescu L.M. et al. // Materials. 2018. V. 11. P. 2081. https://doi.org/10.3390/ma11112081
  27. Голованова О.А. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 302. https://doi.org/10.31857/S0044457X20030046

Дополнительные файлы


© О.А. Голованова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах