Simulation of Spin Selectivity of Electrical Conductivity of Chiral Platinum Nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To study the electronic and spin properties of single-walled platinum nanotubes, two rows of chiral nanotubes have been calculated by the relativistic method of symmetrized linearized augmented cylindrical waves: Pt(5, n2) with 1 ≤ n2 ≤ 4 and Pt(10, n2) with 1 ≤ n2 ≤ 9 and radii from 2.24 to 7.78 Å. In all tubes, the intersection of the top of the valence band and the bottom of the conduction band with the Fermi level is observed, which is characteristic of compounds with a semi-metallic band structure. The spin–orbit coupling manifests itself as a splitting of nonrelativistic dispersion curves, which can exceed 0.5 eV for near-Fermi bands and decreases upon transition to the internal states of the valence band and nanotubes of larger diameter. The spin densities of states for electrons with spin up and down at the Fermi level are noticeably different, which can be used to create pure spin currents through nanotubes using alternating electrical voltage. The (5, 3) and (10, 7) nanotubes are the most suitable for this.

About the authors

P. N. D’yachkov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: p_dyachkov@rambler.ru
119991, Moscow, Russia

N. A. Lomakin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia

References

  1. Oshima Y., Koizumi H., Mouri K. et al. // Phys. Rev. B. 2002. V. 65. P. 121401(R). https://doi.org/10.1103/PhysRevB.65.121401
  2. Oshima Y., Onga A., Takayanagi K. // Phys. Rev. Lett. 2003. V. 91. P. 205503. https://doi.org/10.1103/PhysRevLett.91.205503
  3. Huang Z., Raciti D., Yu S. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 6332. https://doi.org/10.1021/jacs.6b01328
  4. Bi Y., Lu G. // Electrochem. Commun. 2009. V. 11. P. 45. https://doi.org/10.1016/j.elecom.2008.10.023
  5. Lou X.W., Archer L.A., Yang Z. // Adv. Mater. 2008. V. 20. P. 3987. https://doi.org/10.1002/adma.200800854
  6. Zhang G., Sun S., Cai M. et al. // Scient. Rep. 2013. V. 3. P. 1526. https://doi.org/10.1038/srep01526
  7. Hendren W.R., Murphy A., Evans P. et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 362203. https://doi.org/10.1088/0953-8984/20/36/362203
  8. Oshima Y., Mouri K., Hirayama H. et al. // J. Phys. Soc. Jpn. 2006. V. 75. P. 053705. https://doi.org/10.1143/jpsj.75.053705
  9. Del Valle M., Tejedor C., Cuniberti G. // Phys. Rev. B. 2006. V. 74. P. 045408. https://doi.org/10.1103/PhysRevB.74.045408
  10. Rajalaa T., Kronberga R., Backhouse R. // Appl. Catal. B: Environ. 2020. V. 265. P. 118582. https://doi.org/10.1016/j.apcatb.2019.118582
  11. Ono T., Hirose K. // Phys. Rev. Lett. 2005. V. 94. P. 206806. https://doi.org/10.1103/PhysRevLett.94.206806
  12. Zhang K., Zhang H. // J. Phys. Chem. C. 2014. V. 118. P. 635. https://doi.org/10.1021/jp410056u
  13. Shimada T., Ishii Y., Kitamura T. // Phys. Rev. B. 2011. V. 84. P. 165452. https://doi.org/10.1103/PhysRevB.84.165452
  14. Manrique D.Zs., Cserti J., Lambert C.J. // Phys. Rev. B. 2010. V. 81. P. 073103. https://doi.org/10.1103/PhysRevB.81.073103
  15. Andersen O.K. // Phys. Rev. B. 1970. V. 2. P. 883. https://doi.org/10.1103/PhysRevB.2.883
  16. Bordoloit A.K., Auluck S. // J. Phys. F: Met. Phys. 1983. V. 13. P. 2101. https://https://doi.org/10.1088/0305-4608/13/10/019
  17. Wern H., Courths R., Leschik G. et al. // Z. Phys. B: Condens. Matter. 1985. V. 60. P. 293. https://doi.org/10.1007/BF01304449
  18. Herrera-Suárez H.J., Rubio-Ponce A., Olguín D. // Revista Mexicana de Física. 2012. V. 58. P. 46. https://doi.org/10.48550/arXiv.1311.5929
  19. Matanović I., Kent P.R.C., Garzon F.H. et al. // J. Electrochem. Soc. 2013. V. 160. P. F548. https://doi.org/10.1149/2.047306jes
  20. Xiao L., Wang L. // Chem. Phys. Lett. 2006. V. 430. P. 319. https://doi.org/10.1016/j.cplett.2006.09.032
  21. Hui L., Pederiva F., Guanghou W. et al. // Chem. Phys. Lett. 2003. V. 381. P. 94. https://doi.org/10.1016/j.cplett.2003.08.110
  22. Konar S., Gupta B.C. // Phys. Rev. B. 2008. V. 78. P. 235414. https://doi.org/10.1103/PhysRevB.78.235414
  23. Дьячков П.Н., Дьячков Е.П. // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1073. https://doi.org/10.31857/S0044457X20070077
  24. Krasnov D.O., Khoroshavin L.O., D’yachkov P.N. // Russ. J. Inorg. Chem. 2019. V. 64. P. 108. https://doi.org/10.1134/S0036023619010145
  25. D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. C. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
  26. D'yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
  27. Ando T. // J. Phys. Soc. Jpn. 2000. V. 69. P. 1757. https://doi.org/10.1143/JPSJ.74.777
  28. Minot E.D., Yaish Y., Sazonova V. et al. // Nature. 2004. V. 428. P. 536. https://doi.org/10.1038/nature02425
  29. Kuemmeth F., Ilani S., Ralph D.C. et al. // Nature. 2008. V. 452. P. 448. https://doi.org/10.1038/nature06822
  30. Дьячков П.Н. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1441. https://doi.org/10.31857/S0044457X22100385
  31. D’yachkov P.N. Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves; CRC Press. London: Taylor and Francis, 2019. 212 p.
  32. D’yachkov P.N., Makaev. D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  33. Banerjee-Ghosh K., Dor O.B., Tassinari F. et al. // Science. 2018. V. 360. P. 1331. https://doi.org/10.1126/science.aar4265
  34. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
  35. Gutierrez R., D́ıaz E., Gaul C. et al. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
  36. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
  37. Yang S.H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  38. Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
  39. Bercioux D., Lucignano P. // Rep. Prog. Phys. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
  40. Manchon A., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (334KB)
3.

Download (804KB)
4.

Download (137KB)

Copyright (c) 2023 П.Н. Дьячков, Н.А. Ломакин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».