Термодинамические и высокотемпературные свойства KFe0.33W1.67O6

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты исследования соединения KFe0.33W1.67O6. Соединение получено методом твердофазного синтеза при температуре 1073 К. Структурно-морфологические свойства KFe0.33W1.67O6 охарактеризованы методами рентгенофазового анализа, сканирующей электронной микроскопии и энергодисперсионной рентгеновской спектроскопии. Соединение кристаллизуется в кубической сингонии с пространственной группой Fd–3m (227). Параметр решетки a = = 10.3697(3) Å. Фазовые переходы KFe0.33W1.67O6 определены методами низкотемпературной и высокотемпературной рентгенографии. Методами прецизионной адиабатической вакуумной калориметрии и дифференциальной сканирующей калориметрии впервые измерена температурная зависимость теплоемкости KFe0.33W1.67O6 в диапазоне от 5 до 638 К. По экспериментальным данным рассчитаны стандартные термодинамические функции: теплоемкость \(C_{p}^{^\circ }\)(T), энтальпия H°(T) – ‒ H°(0), энтропия S°(T) – S°(0) и функция Гиббса G°(T) – H°(0) в диапазоне от T → 0 до 630 К.

Об авторах

А. Г. Шварева

Нижегородский государственный университет им. Н.И. Лобачевского

Email: knyazevav@gmail.com
Россия, 603950

В. М. Кяшкин

Национальный исследовательский Мордовский государственный университет

Email: knyazevav@gmail.com
Россия, Республика Мордовия, 430005

Н. Н. Смирнова

Нижегородский государственный университет им. Н.И. Лобачевского

Email: knyazevav@gmail.com
Россия, 603950

А. В. Маркин

Нижегородский государственный университет им. Н.И. Лобачевского

Email: knyazevav@gmail.com
Россия, 603950

Д. Г. Фукина

Нижегородский государственный университет им. Н.И. Лобачевского

Email: knyazevav@gmail.com
Россия, 603950

А. В. Князев

Нижегородский государственный университет им. Н.И. Лобачевского

Автор, ответственный за переписку.
Email: knyazevav@gmail.com
Россия, 603950

Список литературы

  1. Deepa M., Prabhakar Rao P., Radhakrishnan A.N. et al. // Mater.Res.Bull. 2009. V. 44. P. 1481.
  2. Sibi K.S., Radhakrishnan A.N., Deepa M. et al. // Solid State Ion. 2009. V. 180. P. 1164.
  3. Díaz-Guillén J.A., Fuentes A.F., Díaz-Guillén M.R. et al. // J. Power Sources. 2009. V. 186. P. 349.
  4. Knoke G.T., Niazi A., Hil J.M. et al. // Matter Mater. Phys. 2007. V. 76. P. 054439–1.
  5. Hirayama M., Sonoyama N., Yamada A. et al. // J. Lumin. 2008. V. 128. P. 1819.
  6. Zhang A., Lu M., Yang Z. et al. // Solid State Sci. 2008. V. 10. P. 74.
  7. Ewing R.C. // Proc. Natl. Acad. Sci. U.S.A. 1999. V. 96. P. 3432.
  8. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
  9. Ringwood A.E., Kesson S.E., Ware N.G. et al. // Nature. 1979. V. 278. P. 219.
  10. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Solid State Ion. 2006. V. 177. P. 1149.
  11. Abrantes J.C.C., Levchenko A., Shlyakhtina A.V. et al. // Solid State Ion. 2006. V. 177. P. 1785.
  12. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Mater. Sci. Forum. 2006. V. 515. P. 422.
  13. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ion. 2006. V. 176. P. 2297.
  14. Sohn J.M., Kim M.R., Woo S.I. // Catal. Today. 2003. V. 83. P. 289.
  15. Ting-ting T., Li-xi W., Qi-tu Z. // J. Alloy. Compd. 2009. V. 486. P. 606.
  16. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1.
  17. Ravi G., Sravan Kumar K., Guje R. et al. // J Solid State Chem. 2016. V. 233. P. 342.
  18. Ravi R., Palla S., Kumar Veldurthi N. et al. // Int. J. Hydrog. Energy. 2014. V. 39. P. 15352e.
  19. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim Acta. 2010. V. 499. P. 155.
  20. Knyazev A.V., Mączka M., Kuznetsova N.Yu. et al. // J. Therm. Anal. Calorim. 2009. V. 98. P. 843.
  21. Knyazev A.V., Chernorukov N.G., Smirnova N.N. et al. // Thermochim Acta. 2008. V. 470. P. 47.
  22. Knyazev A.V., Paraguassu W., Blokhina A.G. et al. // Thermodynamic and spectroscopic properties of KNbTeO6. J. Chem. Thermodynamics. 2017. V. 107. P. 26.
  23. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210.
  24. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // Chem. Thermodyn. 2009. V. 41. P. 46.
  25. Babel D., Pausewang D., Viebahn W. et al. // Z NATURFORSCH B. 1967. V. 22. P. 1219.
  26. Chase M.W. NIST-JANAF thermochemical tables (Monograph 9) // J. Phys. Chem. Ref. Data 1998. P. 59.
  27. Cox J.D., Wagman D.D., Medvedev V.A. Codata Key Values for Thermodynamics. New York, 1984. 60 p.
  28. Mączka M., Knyazev A.V., Kuznetsova N.Yu. et al. // J. Raman Spectrosc. 2011. V. 42. P. 529.
  29. Knyazev A.V., Mączka M., Kuznetsova N.Yu. // Thermochim Acta. 2010. V. 506. P. 20.

Дополнительные файлы


© А.Г. Шварева, В.М. Кяшкин, Н.Н. Смирнова, А.В. Маркин, Д.Г. Фукина, А.В. Князев, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах