Thermodynamic and High-Temperature Properties of KFe0.33W1.67O6

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents the results of a study of the KFe0.33W1.67O6 system. The compound was obtained by a solid-phase synthesis method at a temperature of 1073 K. The structural, morphological, and spectroscopic properties of KFe0.33W1.67O6 were characterized using XRD, SEM-EDS. The compound crystallizes in a cubic lattice with the space group Fd–3m (227). The obtained lattice parameter a = 10.3697 (3) Å. The phase transitions of KFe0.33W1.67O6 were determined by low-temperature and high-temperature X-ray diffraction. The temperature dependence of heat capacity of KFe0.33W1.67O6 has been measured for the first time in the range from 5 to 638 K by precision adiabatic vacuum calorimetry and differential scanning calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C∘p∘(T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K.

Sobre autores

A. Shvareva

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

V. Smirnova

National Research Ogarev Mordovia State University

Email: knyazevav@gmail.com
430005, Saransk, Russia

N. Smirnova

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

A. Markin

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

D. Fukina

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

A. Knyazev

National Research Lobachevsky State University of Nizhny Novgorod

Autor responsável pela correspondência
Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

Bibliografia

  1. Deepa M., Prabhakar Rao P., Radhakrishnan A.N. et al. // Mater.Res.Bull. 2009. V. 44. P. 1481.
  2. Sibi K.S., Radhakrishnan A.N., Deepa M. et al. // Solid State Ion. 2009. V. 180. P. 1164.
  3. Díaz-Guillén J.A., Fuentes A.F., Díaz-Guillén M.R. et al. // J. Power Sources. 2009. V. 186. P. 349.
  4. Knoke G.T., Niazi A., Hil J.M. et al. // Matter Mater. Phys. 2007. V. 76. P. 054439–1.
  5. Hirayama M., Sonoyama N., Yamada A. et al. // J. Lumin. 2008. V. 128. P. 1819.
  6. Zhang A., Lu M., Yang Z. et al. // Solid State Sci. 2008. V. 10. P. 74.
  7. Ewing R.C. // Proc. Natl. Acad. Sci. U.S.A. 1999. V. 96. P. 3432.
  8. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
  9. Ringwood A.E., Kesson S.E., Ware N.G. et al. // Nature. 1979. V. 278. P. 219.
  10. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Solid State Ion. 2006. V. 177. P. 1149.
  11. Abrantes J.C.C., Levchenko A., Shlyakhtina A.V. et al. // Solid State Ion. 2006. V. 177. P. 1785.
  12. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Mater. Sci. Forum. 2006. V. 515. P. 422.
  13. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ion. 2006. V. 176. P. 2297.
  14. Sohn J.M., Kim M.R., Woo S.I. // Catal. Today. 2003. V. 83. P. 289.
  15. Ting-ting T., Li-xi W., Qi-tu Z. // J. Alloy. Compd. 2009. V. 486. P. 606.
  16. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1.
  17. Ravi G., Sravan Kumar K., Guje R. et al. // J Solid State Chem. 2016. V. 233. P. 342.
  18. Ravi R., Palla S., Kumar Veldurthi N. et al. // Int. J. Hydrog. Energy. 2014. V. 39. P. 15352e.
  19. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim Acta. 2010. V. 499. P. 155.
  20. Knyazev A.V., Mączka M., Kuznetsova N.Yu. et al. // J. Therm. Anal. Calorim. 2009. V. 98. P. 843.
  21. Knyazev A.V., Chernorukov N.G., Smirnova N.N. et al. // Thermochim Acta. 2008. V. 470. P. 47.
  22. Knyazev A.V., Paraguassu W., Blokhina A.G. et al. // Thermodynamic and spectroscopic properties of KNbTeO6. J. Chem. Thermodynamics. 2017. V. 107. P. 26.
  23. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210.
  24. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // Chem. Thermodyn. 2009. V. 41. P. 46.
  25. Babel D., Pausewang D., Viebahn W. et al. // Z NATURFORSCH B. 1967. V. 22. P. 1219.
  26. Chase M.W. NIST-JANAF thermochemical tables (Monograph 9) // J. Phys. Chem. Ref. Data 1998. P. 59.
  27. Cox J.D., Wagman D.D., Medvedev V.A. Codata Key Values for Thermodynamics. New York, 1984. 60 p.
  28. Mączka M., Knyazev A.V., Kuznetsova N.Yu. et al. // J. Raman Spectrosc. 2011. V. 42. P. 529.
  29. Knyazev A.V., Mączka M., Kuznetsova N.Yu. // Thermochim Acta. 2010. V. 506. P. 20.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (809KB)
3.

Baixar (152KB)
4.

Baixar (101KB)
5.

Baixar (74KB)
6.

Baixar (48KB)
7.

Baixar (41KB)

Declaração de direitos autorais © А.Г. Шварева, В.М. Кяшкин, Н.Н. Смирнова, А.В. Маркин, Д.Г. Фукина, А.В. Князев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies