Thermodynamic and High-Temperature Properties of KFe0.33W1.67O6

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the results of a study of the KFe0.33W1.67O6 system. The compound was obtained by a solid-phase synthesis method at a temperature of 1073 K. The structural, morphological, and spectroscopic properties of KFe0.33W1.67O6 were characterized using XRD, SEM-EDS. The compound crystallizes in a cubic lattice with the space group Fd–3m (227). The obtained lattice parameter a = 10.3697 (3) Å. The phase transitions of KFe0.33W1.67O6 were determined by low-temperature and high-temperature X-ray diffraction. The temperature dependence of heat capacity of KFe0.33W1.67O6 has been measured for the first time in the range from 5 to 638 K by precision adiabatic vacuum calorimetry and differential scanning calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C∘p∘(T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K.

About the authors

A. G. Shvareva

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

V. M. Smirnova

National Research Ogarev Mordovia State University

Email: knyazevav@gmail.com
430005, Saransk, Russia

N. N. Smirnova

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

A. V. Markin

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

D. G. Fukina

National Research Lobachevsky State University of Nizhny Novgorod

Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

A. V. Knyazev

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: knyazevav@gmail.com
603950, Nizhny Novgorod, Russia

References

  1. Deepa M., Prabhakar Rao P., Radhakrishnan A.N. et al. // Mater.Res.Bull. 2009. V. 44. P. 1481.
  2. Sibi K.S., Radhakrishnan A.N., Deepa M. et al. // Solid State Ion. 2009. V. 180. P. 1164.
  3. Díaz-Guillén J.A., Fuentes A.F., Díaz-Guillén M.R. et al. // J. Power Sources. 2009. V. 186. P. 349.
  4. Knoke G.T., Niazi A., Hil J.M. et al. // Matter Mater. Phys. 2007. V. 76. P. 054439–1.
  5. Hirayama M., Sonoyama N., Yamada A. et al. // J. Lumin. 2008. V. 128. P. 1819.
  6. Zhang A., Lu M., Yang Z. et al. // Solid State Sci. 2008. V. 10. P. 74.
  7. Ewing R.C. // Proc. Natl. Acad. Sci. U.S.A. 1999. V. 96. P. 3432.
  8. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
  9. Ringwood A.E., Kesson S.E., Ware N.G. et al. // Nature. 1979. V. 278. P. 219.
  10. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Solid State Ion. 2006. V. 177. P. 1149.
  11. Abrantes J.C.C., Levchenko A., Shlyakhtina A.V. et al. // Solid State Ion. 2006. V. 177. P. 1785.
  12. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Mater. Sci. Forum. 2006. V. 515. P. 422.
  13. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ion. 2006. V. 176. P. 2297.
  14. Sohn J.M., Kim M.R., Woo S.I. // Catal. Today. 2003. V. 83. P. 289.
  15. Ting-ting T., Li-xi W., Qi-tu Z. // J. Alloy. Compd. 2009. V. 486. P. 606.
  16. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1.
  17. Ravi G., Sravan Kumar K., Guje R. et al. // J Solid State Chem. 2016. V. 233. P. 342.
  18. Ravi R., Palla S., Kumar Veldurthi N. et al. // Int. J. Hydrog. Energy. 2014. V. 39. P. 15352e.
  19. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim Acta. 2010. V. 499. P. 155.
  20. Knyazev A.V., Mączka M., Kuznetsova N.Yu. et al. // J. Therm. Anal. Calorim. 2009. V. 98. P. 843.
  21. Knyazev A.V., Chernorukov N.G., Smirnova N.N. et al. // Thermochim Acta. 2008. V. 470. P. 47.
  22. Knyazev A.V., Paraguassu W., Blokhina A.G. et al. // Thermodynamic and spectroscopic properties of KNbTeO6. J. Chem. Thermodynamics. 2017. V. 107. P. 26.
  23. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210.
  24. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // Chem. Thermodyn. 2009. V. 41. P. 46.
  25. Babel D., Pausewang D., Viebahn W. et al. // Z NATURFORSCH B. 1967. V. 22. P. 1219.
  26. Chase M.W. NIST-JANAF thermochemical tables (Monograph 9) // J. Phys. Chem. Ref. Data 1998. P. 59.
  27. Cox J.D., Wagman D.D., Medvedev V.A. Codata Key Values for Thermodynamics. New York, 1984. 60 p.
  28. Mączka M., Knyazev A.V., Kuznetsova N.Yu. et al. // J. Raman Spectrosc. 2011. V. 42. P. 529.
  29. Knyazev A.V., Mączka M., Kuznetsova N.Yu. // Thermochim Acta. 2010. V. 506. P. 20.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (809KB)
3.

Download (152KB)
4.

Download (101KB)
5.

Download (74KB)
6.

Download (48KB)
7.

Download (41KB)

Copyright (c) 2023 А.Г. Шварева, В.М. Кяшкин, Н.Н. Смирнова, А.В. Маркин, Д.Г. Фукина, А.В. Князев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies