Физико-химические и каталитические свойства Mo-Zr/ZSM-5 катализаторов дегидроароматизации метана

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Исследовано влияние способа и количества циркония, введенного в катализатор 4Mo/ZSM-5, на его физико-химические и каталитические свойства в процессе неокислительной конверсии метана в ароматические углеводороды (бензол и нафталин). Катализатор был модифицирован цирконием методами пропитки и твердофазного смешения. Полученные цеолитные катализаторы исследованы методами ИК-спектроскопии, рентгенофазового анализа, низкотемпературной адсорбции азота, термопрограммируемой десорбции аммиака, сканирующей и просвечивающей электронной микроскопии, синхронного термического анализа. С повышением концентрации вводимого в катализатор 4Mo/ZSM-5 циркония снижается преимущественно сила и концентрация его сильных кислотных центров, отвечающих за процесс ароматизации метана, независимо от способа модифицирования. Методами сканирующей и просвечивающей электронной микроскопии установлена морфология и размер частиц катализаторов, распределение в них Мо и Zr, а также наличие на их поверхности коксовых отложений. Каталитические испытания и последующий термический анализ образцов показали, что добавка циркония к катализатору 4Mo/ZSM-5 приводит не только к увеличению его каталитической активности, но и стабильности работы за счет снижения скорости коксообразования. Установлено, что наиболее эффективным в процессе дегидроароматизации метана является катализатор 4Mo/ZSM-5, модифицированный 1 мас. % Zr-методом твердофазного синтеза.

Sobre autores

Ж. Будаев

Институт химии нефти СО РАН; Томский государственный университет

Email: pika@ipc.tsc.ru
Россия, Томск; Россия, Томск

Л. Коробицына

Институт химии нефти СО РАН

Email: pika@ipc.tsc.ru
Россия, Томск

А. Степанов

Институт химии нефти СО РАН

Email: pika@ipc.tsc.ru
Россия, Томск

Е. Герасимов

Институт катализа им. Г.К. Борескова СО РАН

Email: pika@ipc.tsc.ru
Россия, Новосибирск

А. Восмериков

Институт химии нефти СО РАН; Томский государственный университет

Autor responsável pela correspondência
Email: pika@ipc.tsc.ru
Россия, Томск; Россия, Томск

Bibliografia

  1. Ma S., Guo X., Zhao L. et al. // J. Energy Chem. 2013. V. 22. P. 1. https://doi.org/10.1016/S2095-4956(13)60001-7
  2. Wang B., Albarracin-Suazo S., Pagan-Torres Y. et al. // Catal. Today. 2017. V. 285. P. 147. https://doi.org/10.1016/j.cattod.2017.01.023
  3. Ramasubramanian V., Ramsurn H., Price G.L. // J. Energy Chem. 2019. V. 34. P. 20. https://doi.org/10.1016/j.jechem.2018.09.018
  4. Corredor E.C., Chitta P., Deo M.D. // Fuel Process. Technol. 2019. V. 183. P. 55. https://doi.org/10.1016/j.fuproc.2018.05.038
  5. Rahman M., Infantes-Molina A., Boubnov A. et al. // J. Catal. 2019. V. 375. P. 314. https://doi.org/10.1016/j.jcat.2019.06.002
  6. Chen L., Lin L., Xu Z. et al. // J. Catal. 1995. V. 157. P. 190. https://doi.org/10.1006/jcat.1995.1279
  7. Kiani D., Sourav S., Tang Y. et al. // Chem. Soc. Rev. 2021. V. 50. P. 1251. https://doi.org/10.1039/D0CS01016B
  8. Menon U., Rahman M., Khatib S.J. // Appl. Catal. A, General. 2020. V. 608. P. 117870. https://doi.org/10.1016/j.apcata.2020.117870
  9. Ogawa Y., Xu Y., Zhang Z. et al. // Resources Chem. Mater. 2022. V. 1. P. 80. https://doi.org/10.1016/j.recm.2022.01.004
  10. Kosinov N., Hensen E.J.M. // Adv. Mater. 2020. V. 32. P. 2002565. https://doi.org/10.1002/adma.202002565
  11. Chen L., Lin L., Xu Z. et al. // Catal. Lett. 1996. V. 39. P. 169. https://doi.org/10.1007/BF00805578
  12. Wang L., Xu Y., Wong S. et al. // Appl. Catal. A: 1997. V. 152. P. 173. https://doi.org/10.1016/S0926-860X(96)00366-3
  13. Liu S., Dong Q., Ohnishi R. et al. // Chem. Commun. 1997. № 15. P. 1445. https://doi.org/10.1039/A702731A
  14. Wang Q., Lin W. // J. Nat. Gas Chem. 2004. V. 13. P. 91. https://doi.org/10.1109/TIP.2004.823822
  15. Sridhar A., Rahman M., Infantes-Molina A. et al. // Appl. Catal. A, General. 2020. V. 589. P. 117247. https://doi.org/10.1016/j.apcata.2019.117247
  16. Восмерикова Л.Н., Волынкина А.Н., Восмериков А.В. и др. // НефтеГазоХимия. 2015. № 1. С. 37. [Vosmerikova L.N., Volynkina A.N., Vosmerikov A.V. et al. // Oil & Gas Chemistry. 2015. No. 1. P. 37 (In Russ)]
  17. Korobitsyna L.L., Zharnov K.N., Stepanov A.A. et al. // Journal of Siberian Federal University. Chemistry. 2019. V. 12. P. 118. https://doi.org/10.17516/1998-2836-0111
  18. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УрО РАН, 1988. 200 c. [Gusev A.I. Nano-crystalline materials: methods of obtaining and properties. Yekaterinburg: IPM UrO RAN, 1998. 200 p. (In Russ.)]
  19. Shukla D., Pandya V. // J. Chem. Tech. Biotechnol. 1983. V. 44. P. 147.
  20. Vosmerikov A.V., Echevskii G.V., Korobitsyna L.L. et al. // Kinetics and Catalysis. 2005. V. 46. № 5. P. 724. https://doi.org/10.1007/s10975-005-0128-2
  21. Zaikovskii V.I., Vosmerikov A.V., Anufrienko V.F. et al. // Doklady Physical Chemistry. 2005. V. 404. P. 201. https://doi.org/10.1007/s10634-005-0060-1
  22. Denardin F.G., Perez-Lopez O.W. // Micropor. Mesopor. Mater. 2020. V. 295. P. 109961. https://doi.org/10.1016/j.micromeso.2019.109961
  23. Stepanov A.A., Korobitsyna L.L., Vosmerikov A.V. // Catalysis in Industry. 2022. V. 14. P. 11. https://doi.org/10.1134/S2070050422010093
  24. Song Y., Zhang Q., Xu Y. et al. // Appl. Catal. A: General. 2017. V. 530. P. 12. https://doi.org/10.1016/j.apcata.2016.11.016

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (117KB)
3.

Baixar (256KB)
4.

Baixar (678KB)
5.

Baixar (1MB)
6.

Baixar (2MB)
7.

Baixar (773KB)

Declaração de direitos autorais © Ж.Б. Будаев, Л.Л. Коробицына, А.А. Степанов, Е.Ю. Герасимов, А.В. Восмериков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies