Distribution of Charges over the Surfaces of Charged Particles of Complex Shapes while Electrospraying

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A current topical area of condensed matter physics is research in the field of structured materials that contain structures of micro- and nanoparticles. Electrospray is widely used to obtain micro- and nanoparticles. It is known to allow particles of different geometric shapes to be obtained. The authors propose an analytical procedure for obtaining a new class of nontrivial analytical solutions to the electrostatics problem of charge distribution over the surfaces of particles that can form while electrospraying. Complex nontrivial forms of this class of surfaces are considered. Exact analytical formulas are obtained for the charge distribution density over the surfaces of particles.

About the authors

Yu. V. Samukhina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: juliesam2008@mail.ru
119071, Moscow, Russia

A. K. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: juliesam2008@mail.ru
119071, Moscow, Russia

References

  1. Lebedev A.T., Zaikin // J. of Analytical Chemistry. 2008. V. 63. № 12. P. 1128.
  2. Kebarle P., Peschke M. // Analytica Chimica Acta. 2000. V. 406. № 1. P. 11.
  3. Fenn J.B., Mann V.V., Meng C.K. et al. // Science. 1989. № 246. P. 64.
  4. Almería B., Deng W., Fahmy T.M., Gomez A. // J. Colloid Interface Sci. Elsevier Inc. 2010. V. 343. № 1. P. 125.
  5. Grafahrend D., Jungbecker P., Seide G. et al. // The Open Chemical and Biomedical Methods Journal. 2010. V. 3. P. 1.
  6. Hong Y., Li Y., Yin Y. et al. // J. Aerosol Sci. 2008. V. 39. № 6. P. 525.
  7. Xie J., Lim L.K., Phua Y. et al. // J. Colloid Interface Sci., 2006. V. 302. № 1. P. 103.
  8. Xie J., Marijnissen J.C.M., Wang C.-H. // Biomaterials. 2006. V. 27. № 17. P. 3321.
  9. Anil Jindal B. // Int J. Pharm. 2017. V. 532 (1). P. 450.
  10. Champion J.A., Katare Y.K., Mitragotri S. // J. Control Reliab. 2007. V. 121. P. 3.
  11. Taylor G. // Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1964. № 1382. P. 383.
  12. Li K.-Y., Tu H., Asit K. // Langmuir. 2005. V. 21. P. 3786.
  13. Tang K., Smith R. // J. Am. Soc. Mass. Spectrom. 2001. № 12 (3). P. 343.
  14. Shiryaeva S.O. // Technical Physics. The Russian Journal of Applied Physics. 2006. V. 51. № 11. P. 1431.
  15. Gomez A., Tang K. // Phys. Fluids. 1994. V. 6. P. 404.
  16. Allan R.S., Mason S.G. // Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1962. V. 267. № 1328. P. 45.
  17. Karyappa R.B., Deshmukh S.D., Thaokar R.M. // J. Fluid Mech. 2014. № 754. P. 550.
  18. Du W., Chaudhuri S. // Intern. J. of Multiphase Flow. 2017. V. 90. P. 46.
  19. Martin G.D., Hoath S.D., Hutchings I.M. // J. Phys.: Conf. Ser. 2008. V. 105. P. 1.
  20. Jain M., Rao A., Nandakumar K. // Microfluid. Nanofluid. 2013. V. 15. № 5. P. 689.
  21. Asano K. // J. of Electrostatics. 2010. V. 68. P. 132.
  22. Girardi M. // J. of Electrostatics. 2010. V. 68. P. 409.
  23. Lekner J. // Ibid. 2010. V. 68. P. 299.
  24. Zhu P., Zhu Yi J. // Ibid. 2012. V. 70. P. 25.
  25. Kolikov K., Ivanov D., Krastev G., Epitropov Yo. // Ibid. 2012. V. 70. P. 91.
  26. Polyakov P.A., Rusakova N.E., Samukhina Yu.V. // Ibid. 2015. V. 77. P. 147.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (896KB)
3.

Download (939KB)

Copyright (c) 2023 Ю.В. Самухина, А.К. Буряк

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies