Distribution of Charges over the Surfaces of Charged Particles of Complex Shapes while Electrospraying

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A current topical area of condensed matter physics is research in the field of structured materials that contain structures of micro- and nanoparticles. Electrospray is widely used to obtain micro- and nanoparticles. It is known to allow particles of different geometric shapes to be obtained. The authors propose an analytical procedure for obtaining a new class of nontrivial analytical solutions to the electrostatics problem of charge distribution over the surfaces of particles that can form while electrospraying. Complex nontrivial forms of this class of surfaces are considered. Exact analytical formulas are obtained for the charge distribution density over the surfaces of particles.

Sobre autores

Yu. Samukhina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: juliesam2008@mail.ru
119071, Moscow, Russia

A. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: juliesam2008@mail.ru
119071, Moscow, Russia

Bibliografia

  1. Lebedev A.T., Zaikin // J. of Analytical Chemistry. 2008. V. 63. № 12. P. 1128.
  2. Kebarle P., Peschke M. // Analytica Chimica Acta. 2000. V. 406. № 1. P. 11.
  3. Fenn J.B., Mann V.V., Meng C.K. et al. // Science. 1989. № 246. P. 64.
  4. Almería B., Deng W., Fahmy T.M., Gomez A. // J. Colloid Interface Sci. Elsevier Inc. 2010. V. 343. № 1. P. 125.
  5. Grafahrend D., Jungbecker P., Seide G. et al. // The Open Chemical and Biomedical Methods Journal. 2010. V. 3. P. 1.
  6. Hong Y., Li Y., Yin Y. et al. // J. Aerosol Sci. 2008. V. 39. № 6. P. 525.
  7. Xie J., Lim L.K., Phua Y. et al. // J. Colloid Interface Sci., 2006. V. 302. № 1. P. 103.
  8. Xie J., Marijnissen J.C.M., Wang C.-H. // Biomaterials. 2006. V. 27. № 17. P. 3321.
  9. Anil Jindal B. // Int J. Pharm. 2017. V. 532 (1). P. 450.
  10. Champion J.A., Katare Y.K., Mitragotri S. // J. Control Reliab. 2007. V. 121. P. 3.
  11. Taylor G. // Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1964. № 1382. P. 383.
  12. Li K.-Y., Tu H., Asit K. // Langmuir. 2005. V. 21. P. 3786.
  13. Tang K., Smith R. // J. Am. Soc. Mass. Spectrom. 2001. № 12 (3). P. 343.
  14. Shiryaeva S.O. // Technical Physics. The Russian Journal of Applied Physics. 2006. V. 51. № 11. P. 1431.
  15. Gomez A., Tang K. // Phys. Fluids. 1994. V. 6. P. 404.
  16. Allan R.S., Mason S.G. // Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1962. V. 267. № 1328. P. 45.
  17. Karyappa R.B., Deshmukh S.D., Thaokar R.M. // J. Fluid Mech. 2014. № 754. P. 550.
  18. Du W., Chaudhuri S. // Intern. J. of Multiphase Flow. 2017. V. 90. P. 46.
  19. Martin G.D., Hoath S.D., Hutchings I.M. // J. Phys.: Conf. Ser. 2008. V. 105. P. 1.
  20. Jain M., Rao A., Nandakumar K. // Microfluid. Nanofluid. 2013. V. 15. № 5. P. 689.
  21. Asano K. // J. of Electrostatics. 2010. V. 68. P. 132.
  22. Girardi M. // J. of Electrostatics. 2010. V. 68. P. 409.
  23. Lekner J. // Ibid. 2010. V. 68. P. 299.
  24. Zhu P., Zhu Yi J. // Ibid. 2012. V. 70. P. 25.
  25. Kolikov K., Ivanov D., Krastev G., Epitropov Yo. // Ibid. 2012. V. 70. P. 91.
  26. Polyakov P.A., Rusakova N.E., Samukhina Yu.V. // Ibid. 2015. V. 77. P. 147.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (896KB)
3.

Baixar (939KB)

Declaração de direitos autorais © Ю.В. Самухина, А.К. Буряк, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies