PRECISION MEASUREMENTS OF BENZOIC ACID DISSOCIATION CONSTANTS BY CONCENTRATION SPECTROPHOTOMETRY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dissociation constant (pKT) of benzoic acid in a binary benzoic acid-water solution at 25 ± 0.5°C was determined using concentration-based UV/VIS spectrophotometry without the addition of titrants, buffer solutions, or background salts. The measured value was 4.294 ± 0.002, which differs from previously reported literature data. A new model accounting for the influence of symmetric and asymmetric electrolytes on acid-base equilibria is proposed. The observed dissociation constants of benzoic acid in aqueous salt solutions exhibit a nonlinear dependence on salt concentration in the range of 10–3 – 10–1 mol·dm–3. It was shown that as the concentration of a strong electrolyte decreases, the observed dissociation constants approach the value obtained in the pure solvent, i.e., the thermodynamic constant.

About the authors

S. S Lysova

Saint Petersburg State University of Industrial Technologies and Design; JSC "Novbytkhim"

Saint Petersburg, Russia; Gatchina, Leningrad Region, Russia

T. A Skripnikova

Saint Petersburg State University of Industrial Technologies and Design; JSC "Novbytkhim"

Email: t-star07@yandex.ru
Saint Petersburg, Russia; Gatchina, Leningrad Region, Russia

A. S Salkova

JSC "Novbytkhim"

Gatchina, Leningrad Region, Russia

Yu. E. Zevatsky

Saint Petersburg State University of Industrial Technologies and Design; JSC "Novbytkhim"; Saint Petersburg State Technological Institute (Technical University)

Saint Petersburg, Russia; Gatchina, Leningrad Region, Russia; Saint Petersburg, Russia

References

  1. Ana del Olmo, Calzada J., Nuñez M. // Critical Reviews in Food Science and Nutrition. 2017. V. 57 (14). P. 3084. https://doi.org/10.1080/10408398.2015.1087964
  2. Chipley J.R. Antimicrobials in Food. Chapter Sodium Benzoate and Benzoic Acid. CRC Press, 2020. P. 48.
  3. Yang X., Sun R. // Wiley Online Library. 2023. V. 365. № 2. P. 124. https://doi.org/10.1002/adsc.202201172
  4. Partanen I.J., Pekka J.M., Minkkinen O.P. // J. of Solution Chemistry.2001.V.30.P.443. https://doi.org/10.1023/A:1010300631756
  5. Jeffery G.Harold B.Sc.A.I.C.Vogel A.Israel D.Sc. D.I.C.F.I.C.//The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1934.V.18 (7).P.901. https://doi.org/10.1080/14786443409462563
  6. Brockman F.G., Kilpatrick M.//J.Am.Chem.Soc. 1934.V.56 (7).P.1483. https://doi.org/10.1021/ja01322a012
  7. Jones A.V., Parton H.N.//Trans.Faraday Soc.1952. V.48.P.8. https://doi.org/10.1039/TF9524800008
  8. Robinson R., Stokes R. Electrolyte Solutions, 2nd edn. Butterworths, London, 1959. p.518.
  9. Hollingsworth C.A., Seybold P.G., Hadad C.M.// Wiley Online Library.2002.V.90 (4-5).P.1396. https://doi.org/10.1002/qua.10362
  10. Streitwieser A., Klein H.S.//Journal of the American Chemical Society.1963.V.85 (18).P.2759. https://doi.org/10.1021/ja00901a019
  11. Wilson J.M., Gore N.E., Sawbridge J.E., Cardenas-Cruz F.//J.Chem.SOC.B.1967.P.852. https://doi.org/10.1039/J29670000852
  12. Matsui T., Chung Ko Hon, Helper Loren G.// Canadian J.of Chemistry.1974.V.52 (16).P.2912. https://doi.org/10.1139/v74-424
  13. Travers J.G., McCurdy K.G., Dolman D., Hepler L.G.// J.of Solution Chemistry.1975.V.4.P.267. https://doi.org/10.1007/BF00650385
  14. Ludwig M., Baron V., Kalfus K., et al.// Collect. Czech.Chem.Commun.1986.V.51. P.2135. https://doi.org/10.1135/cccc19862135
  15. Khouri S.J.//American J.of Analytical Chemistry. 2015.V.06 (05).P.429. https://10.4236/ajac.2015.65042
  16. Lysova S.S., Starikova T.A., Zevatskii Yu.E.//Rus. J.of General Chemistry.2014.V.84.N.8.P.1388. https://10.1134/S1070363214080325
  17. Lebed V.I., Mchedlov-Petrosyan N.O., and Kholin Yu.V. The Scientific Legacy of N.A. Izmailov and Current Problems of Physical Chemistry. Kharkov: Karkov.Nauch.Univ.im.V.N.Karazina.2007.P.227.
  18. Lysova S.S., Skripnikova T.A., Zevatskii Yu.E.//Rus. J.of Physical Chemistry A.2017.V.91.P.2366. https://doi.org/10.1134/S0036024417110139
  19. Zevatskii Yu.E., Lysova S.S., Skripnikova T.A., et al.// Rus.J.of Phys.Chem.A.2024.V.98.2.P.78.
  20. Skripnikova T.A., Lysova S.S., Zevatskii Yu.E.// J.Chem.Eng.Data.2017.V.62.N.8.P.2400. https://doi.org/10.1021/acs.jced.7b00308
  21. Золотов Ю.А. Основы аналитической химии. В 2 кн. Кн.1. Общие вопросы. Методы разделения. 2-е изд. М.: Высш. школа, 2000. С. 351. http://old.exponenta.ru/soft/Mathcad/Mathcad.asp
  22. Lysova S.S., Skripnikova T.A., Zevatsky Yu.E.// Rus. J.of Phys.Chem.A.2021.V.95.P.1826. https://doi.org/10.1134/S0036024421090144
  23. Sergeeva V.F.//Russ.Chem.Rev.1965.V.34.P.309. https://10.1070/RC1965v034n04ABEH001446
  24. Shedlovsky T.//J.Am.Chem.Soc.1932.V.54.N.4. P.1411. https://doi.org/10.1021/ja01343a020
  25. Скрипникова Т.А., Лысова С.С., Зевацкий Ю.Э., Артамонова Т.В.//Изв.СПбГТИ(ТУ).2024.N.68(94).С.3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).