ПРЕЦИЗИОННЫЕ ИЗМЕРЕНИЯ КОНСТАНТ ДИССОЦИАЦИИ БЕНЗОЙНОЙ КИСЛОТЫ КОНЦЕНТРАЦИОННОЙ СПЕКТРОФОТОМЕТРИЕЙ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом концентрационной УФ/вид-спектрофотометрии получено значение рKT бензойной кислоты в бинарном растворе бензойная кислота — вода при 25±0.5°С без добавления титрантов, буферных растворов, фоновых солей, равное 4.294±0.002. Полученное значение отличается от имеющихся в литературе данных. Предложена новая модель учета влияния симметричных и несимметричных электролитов на кислотно-основные равновесия. Обнаружен нелинейный характер зависимостей наблюдаемых констант диссоциации бензойной кислоты в водных растворах солей при их концентрации от 10–3 до 10–1 моль·дм–3. Показано, что при снижении концентрации сильного электролита, наблюдаемые константы диссоциации бензойной кислоты стремятся к значению константы, полученной в чистом растворителе, т. е. к термодинамической.

Об авторах

С. С. Лысова

Санкт-Петербургский государственный университет промышленных технологий и дизайна; АО “Новбытхим”

Санкт-Петербург, Россия; ЛО, Гатчина, Россия

Т. А. Скрипникова

Санкт-Петербургский государственный университет промышленных технологий и дизайна; АО “Новбытхим”

Email: t-star07@yandex.ru
Санкт-Петербург, Россия; ЛО, Гатчина, Россия

А. С. Салькова

АО “Новбытхим”

ЛО, Гатчина, Россия

Ю. Э. Зевацкий

Санкт-Петербургский государственный университет промышленных технологий и дизайна; АО “Новбытхим”; Санкт-Петербургский государственный технологический институт (технический университет)

Санкт-Петербург, Россия; Гатчина, Россия; Санкт-Петербург, Россия

Список литературы

  1. Ana del Olmo, Calzada J., Nuñez M. // Critical Reviews in Food Science and Nutrition. 2017. V. 57 (14). P. 3084. https://doi.org/10.1080/10408398.2015.1087964
  2. Chipley J.R. Antimicrobials in Food. Chapter Sodium Benzoate and Benzoic Acid. CRC Press, 2020. P. 48.
  3. Yang X., Sun R. // Wiley Online Library. 2023. V. 365. № 2. P. 124. https://doi.org/10.1002/adsc.202201172
  4. Partanen I.J., Pekka J.M., Minkkinen O.P. // J. of Solution Chemistry.2001.V.30.P.443. https://doi.org/10.1023/A:1010300631756
  5. Jeffery G.Harold B.Sc.A.I.C.Vogel A.Israel D.Sc. D.I.C.F.I.C.//The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1934.V.18 (7).P.901. https://doi.org/10.1080/14786443409462563
  6. Brockman F.G., Kilpatrick M.//J.Am.Chem.Soc. 1934.V.56 (7).P.1483. https://doi.org/10.1021/ja01322a012
  7. Jones A.V., Parton H.N.//Trans.Faraday Soc.1952. V.48.P.8. https://doi.org/10.1039/TF9524800008
  8. Robinson R., Stokes R. Electrolyte Solutions, 2nd edn. Butterworths, London, 1959. p.518.
  9. Hollingsworth C.A., Seybold P.G., Hadad C.M.// Wiley Online Library.2002.V.90 (4-5).P.1396. https://doi.org/10.1002/qua.10362
  10. Streitwieser A., Klein H.S.//Journal of the American Chemical Society.1963.V.85 (18).P.2759. https://doi.org/10.1021/ja00901a019
  11. Wilson J.M., Gore N.E., Sawbridge J.E., Cardenas-Cruz F.//J.Chem.SOC.B.1967.P.852. https://doi.org/10.1039/J29670000852
  12. Matsui T., Chung Ko Hon, Helper Loren G.// Canadian J.of Chemistry.1974.V.52 (16).P.2912. https://doi.org/10.1139/v74-424
  13. Travers J.G., McCurdy K.G., Dolman D., Hepler L.G.// J.of Solution Chemistry.1975.V.4.P.267. https://doi.org/10.1007/BF00650385
  14. Ludwig M., Baron V., Kalfus K., et al.// Collect. Czech.Chem.Commun.1986.V.51. P.2135. https://doi.org/10.1135/cccc19862135
  15. Khouri S.J.//American J.of Analytical Chemistry. 2015.V.06 (05).P.429. https://10.4236/ajac.2015.65042
  16. Lysova S.S., Starikova T.A., Zevatskii Yu.E.//Rus. J.of General Chemistry.2014.V.84.N.8.P.1388. https://10.1134/S1070363214080325
  17. Lebed V.I., Mchedlov-Petrosyan N.O., and Kholin Yu.V. The Scientific Legacy of N.A. Izmailov and Current Problems of Physical Chemistry. Kharkov: Karkov.Nauch.Univ.im.V.N.Karazina.2007.P.227.
  18. Lysova S.S., Skripnikova T.A., Zevatskii Yu.E.//Rus. J.of Physical Chemistry A.2017.V.91.P.2366. https://doi.org/10.1134/S0036024417110139
  19. Zevatskii Yu.E., Lysova S.S., Skripnikova T.A., et al.// Rus.J.of Phys.Chem.A.2024.V.98.2.P.78.
  20. Skripnikova T.A., Lysova S.S., Zevatskii Yu.E.// J.Chem.Eng.Data.2017.V.62.N.8.P.2400. https://doi.org/10.1021/acs.jced.7b00308
  21. Золотов Ю.А. Основы аналитической химии. В 2 кн. Кн.1. Общие вопросы. Методы разделения. 2-е изд. М.: Высш. школа, 2000. С. 351. http://old.exponenta.ru/soft/Mathcad/Mathcad.asp
  22. Lysova S.S., Skripnikova T.A., Zevatsky Yu.E.// Rus. J.of Phys.Chem.A.2021.V.95.P.1826. https://doi.org/10.1134/S0036024421090144
  23. Sergeeva V.F.//Russ.Chem.Rev.1965.V.34.P.309. https://10.1070/RC1965v034n04ABEH001446
  24. Shedlovsky T.//J.Am.Chem.Soc.1932.V.54.N.4. P.1411. https://doi.org/10.1021/ja01343a020
  25. Скрипникова Т.А., Лысова С.С., Зевацкий Ю.Э., Артамонова Т.В.//Изв.СПбГТИ(ТУ).2024.N.68(94).С.3.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).