THERMOCHEMICAL AND STRUCTURAL PROPERTIES OF K2–2x Na2x Fe1.5Nb0.5(PO4)3 (0 ≤ x ≤ 1) SOLID SOLUTIONS WITH NASICON AND LANGBEINITE STRUCTURES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solid solutions K2–2x Na2x Fe1.5Nb0.5(PO4)3 (0 ≤ x ≤ 1) are studied to determine the stability ranges of the NASICON and langbeinite structural types and to evaluate the mixing energetics. The materials under investigation may be used as cathodes for Na-ion batteries. Powder samples were obtained by a solid-state method and characterized by X-ray microanalysis, X-ray diffraction, and differential scanning calorimetry. Structural refinement was carried out by the Rietveld method using powder X-ray diffraction data at room temperature. It was established that phases isostructural to the mineral langbeinite (K2Mg2(SO4)3, space group P213) crystallize in the range 0 ≤ x ≤ 0.4, while phases isostructural to NASICON NaZr2(PO4)3 (space group R3-c) crystallize in the range 0.9 ≤ x ≤ 1. Standard enthalpies of formation were determined by high-temperature molten-salt calorimetry in a sodium molybdate melt (3Na2O·4MoO3) at 800°C using a Tian–Calvet-type isoperibolic differential calorimeter. The trends in the obtained energetic characteristics are discussed in relation to the structural evolutions across the indicated composition range of the solid solutions. This study expands current knowledge on the isomorphism of alkali cations in framework structures demonstrating possible pathways for changing properties within the investigated series.

About the authors

A. K Koryttseva

Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: koak@chem.unn.ru
Nizhny Novgorod, Russia

A. V Knyazev

Lobachevsky State University of Nizhny Novgorod

Email: koak@chem.unn.ru
Nizhny Novgorod, Russia

E. V Syrov

Lobachevsky State University of Nizhny Novgorod

Email: koak@chem.unn.ru
Nizhny Novgorod, Russia

D. G Fukina

Lobachevsky State University of Nizhny Novgorod

Email: koak@chem.unn.ru
Nizhny Novgorod, Russia

I. A Bazhenova

Lomonosov Moscow State University

Email: koak@chem.unn.ru
Moscow, Russia

V. V Cheverikin

Lomonosov Moscow State University

Email: koak@chem.unn.ru
Moscow, Russia

S. V Kuzovchikov

Lomonosov Moscow State University

Email: koak@chem.unn.ru
Moscow, Russia

References

  1. Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
  2. Воронков А.А., Илюхин В.В., Белов Н.В. // Докл. АН СССР. 1974. Т. 219. № 3. С. 600.
  3. Орлова А.И., Корытцева А.К. // Кристаллография. 2004. Т. 49. № 5. C. 811.
  4. Орлова А.И., Корытцева А.К., Борцова Е.В. и др. // Там же. 2006. Т. 51. № 3. C. 391.
  5. Isasi J., Daidouh A. // Solid State Ionics. 2000. V. 133. P. 303. doi: 10.1016/S0167-2738(00)00677-9.
  6. Luo Y., Sun T., Shui M., Shu J. // Materials Chemistry and Physics. 2019. V. 233. P. 339. https://doi.org/10.1016/j.matchemphys.2019.05.079.
  7. Driscoll. L.L., Driscoll. E.H., Slater. P.R. // J. Sol. State Chem. 2020. V. 287. P. 121363. doi: 10.1016/j.jssc.2020.121363
  8. Marshenya S., Scherbakov A., Dembitskiy A. et al. // Dalton Trans. 2024. V. 53. Iss. 38. Р. 15928. doi: 10.1039/D4DT02288B.
  9. Trussov I., Driscoll L., Male L., et al. // J. Solid State Chem. 2019. V. 276. P. 37. doi: 10.1016/j.jssc.2019.04.036
  10. Zatovsky I., Strutynska N., Ogorodnyk I., et al. // Acta Cryst., Sec. E: Cryst. Commun. 2021. V. 77. P. 1299. doi: 10.1107/s2056989021011877
  11. Zatovsky I.V., Strutynska N.Yu., Hizhnyi Yu.A., et. al. // Chemistry Open. 2018. V. 7. P. 504. doi: 10.1002/open.201800059
  12. Strutynska N., Bondarenko M., Slobodyanik N. et al. // Cryst. Res. Tech. 2016. V. 51. P. 627. doi: 10.1002/crat.201600207
  13. Pet′kov V.I., Alekseev A A., Asabina E.A. // Solid State Sciences. 2024. V.149. P. 107481. doi: 10.1016/j.solidstatesciences.2024.107481
  14. Doebelin N., Kleeberg R. // J. Appl. Cryst. 2015. V. 48. P. 1573. doi: 10.1107/S1600576715014685.
  15. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. doi: 10.1107/S0021889811038970.
  16. Brown I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780199298815.001.0001.
  17. Zhang H., Li N., Li K., Xue D. // Acta Cryst. 2007. V. B63. P. 812. https://doi.org/10.1107/S0108768107046174.
  18. Rodriguez-Carvajal J. // Physica B: Condensed Matter. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I.
  19. Блатов В.А., Шевченко А.П., Сережкин В.Н. // Координац. химия. 1999. Т. 25. № 7. С. 483.
  20. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
  21. Navrotsky A. // J. Am. Ceram. Soc. 2014. V. 97. P. 3349.
  22. Robie R., Hemingway B., Fisher J. Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 bar (105Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. Washington, 1995. 456 p.
  23. Chase M.W., NIST-JANAF Thermochemical Tables, J. Physical and Chemical Reference Data, N9, ACS/ AIP/NIST, 1998.
  24. Yang S., Anderko A., Riman R.E., Navrotsky A. // Acta Mater. 2021. V. 220. P. 117289.
  25. Navrotsky A., Koryttseva A. // Molecules. 2023. V. 28. P. 4623. https://doi.org/10.3390/molecules28124623
  26. Gibson, L. D.; Jayanthi, K.; Yang, S. et al. // J. Phys. Chem. C. 2022. V. 126. P. 18952.
  27. McCormack S.J., Navrotsky A. // Acta Materialia. 2021. V. 202. P. 1. doi: 10.1016/j.actamat.2020.10.043.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).