ТЕРМОХИМИЧЕСКИЕ И СТРУКТУРНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ K2–2x Na2x Fe1.5Nb0.5(PO4)3 (0 ≤ x ≤ 1) СО СТРУКТУРАМИ NASICON И ЛАНГБЕЙНИТ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Твердые растворы K2–2x Na2x Fe1.5Nb0.5(PO4)3 (0 ≤ x ≤ 1) изучаются с целью нахождения границ существования структурных типов NASICON и лангбейнит, определения энергетики смешения. Объекты исследования могут найти применение в качестве катодов для Na-ионных аккумуляторов. Порошкообразные образцы получены твердофазным способом и охарактеризованы рентгеноспектральным микроанализом, рентгенофазовым анализом, дифференциальной сканирующей калориметрией. Уточнение структуры проведено методом Ритвельда по данным порошковой рентгенографии при комнатной температуре. Установлено, что в интервале 0 ≤ x ≤ 0.4 кристаллизуются фазы, изоструктурные минералу лангбейниту (K2Mg2(SO4)3, пр.гр. P213), в интервале 0.9 ≤ x ≤ 1 кристаллизуются фазы, изоструктурные NASICON NaZr2(PO4)3 (пр.гр. R3-c). Стандартные энтальпии образования определяли методом высокотемпературной расплавной калориметрии в расплаве молибдата натрия (3Na2O·4MoO3) при 800°C с помощью изопериболического дифференциального калориметра типа Тиана–Кальве. Тенденции изменения полученных энергетических характеристик обсуждаются в соответствии со структурными эволюциями в указанном интервале составов твердых растворов. Данная работа расширяет сведения об изоморфизме щелочных катионов в каркасных структурах, показывая пути возможного изменения свойств в изучаемом ряду.

Об авторах

А. К Корытцева

Нижегородский государственный университет им. Н. И. Лобачевского

Автор, ответственный за переписку.
Email: koak@chem.unn.ru
Нижний Новгород, Россия

А. В Князев

Нижегородский государственный университет им. Н. И. Лобачевского

Email: koak@chem.unn.ru
Нижний Новгород, Россия

Е. В Сыров

Нижегородский государственный университет им. Н. И. Лобачевского

Email: koak@chem.unn.ru
Нижний Новгород, Россия

Д. Г Фукина

Нижегородский государственный университет им. Н. И. Лобачевского

Email: koak@chem.unn.ru
Нижний Новгород, Россия

И. А Баженова

Московский государственный университет им. М. В. Ломоносова

Email: koak@chem.unn.ru
Москва, Россия

В. В Чеверикин

Московский государственный университет им. М. В. Ломоносова

Email: koak@chem.unn.ru
Москва, Россия

С. В Кузовчиков

Московский государственный университет им. М. В. Ломоносова

Email: koak@chem.unn.ru
Москва, Россия

Список литературы

  1. Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
  2. Воронков А.А., Илюхин В.В., Белов Н.В. // Докл. АН СССР. 1974. Т. 219. № 3. С. 600.
  3. Орлова А.И., Корытцева А.К. // Кристаллография. 2004. Т. 49. № 5. C. 811.
  4. Орлова А.И., Корытцева А.К., Борцова Е.В. и др. // Там же. 2006. Т. 51. № 3. C. 391.
  5. Isasi J., Daidouh A. // Solid State Ionics. 2000. V. 133. P. 303. doi: 10.1016/S0167-2738(00)00677-9.
  6. Luo Y., Sun T., Shui M., Shu J. // Materials Chemistry and Physics. 2019. V. 233. P. 339. https://doi.org/10.1016/j.matchemphys.2019.05.079.
  7. Driscoll. L.L., Driscoll. E.H., Slater. P.R. // J. Sol. State Chem. 2020. V. 287. P. 121363. doi: 10.1016/j.jssc.2020.121363
  8. Marshenya S., Scherbakov A., Dembitskiy A. et al. // Dalton Trans. 2024. V. 53. Iss. 38. Р. 15928. doi: 10.1039/D4DT02288B.
  9. Trussov I., Driscoll L., Male L., et al. // J. Solid State Chem. 2019. V. 276. P. 37. doi: 10.1016/j.jssc.2019.04.036
  10. Zatovsky I., Strutynska N., Ogorodnyk I., et al. // Acta Cryst., Sec. E: Cryst. Commun. 2021. V. 77. P. 1299. doi: 10.1107/s2056989021011877
  11. Zatovsky I.V., Strutynska N.Yu., Hizhnyi Yu.A., et. al. // Chemistry Open. 2018. V. 7. P. 504. doi: 10.1002/open.201800059
  12. Strutynska N., Bondarenko M., Slobodyanik N. et al. // Cryst. Res. Tech. 2016. V. 51. P. 627. doi: 10.1002/crat.201600207
  13. Pet′kov V.I., Alekseev A A., Asabina E.A. // Solid State Sciences. 2024. V.149. P. 107481. doi: 10.1016/j.solidstatesciences.2024.107481
  14. Doebelin N., Kleeberg R. // J. Appl. Cryst. 2015. V. 48. P. 1573. doi: 10.1107/S1600576715014685.
  15. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. doi: 10.1107/S0021889811038970.
  16. Brown I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780199298815.001.0001.
  17. Zhang H., Li N., Li K., Xue D. // Acta Cryst. 2007. V. B63. P. 812. https://doi.org/10.1107/S0108768107046174.
  18. Rodriguez-Carvajal J. // Physica B: Condensed Matter. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I.
  19. Блатов В.А., Шевченко А.П., Сережкин В.Н. // Координац. химия. 1999. Т. 25. № 7. С. 483.
  20. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
  21. Navrotsky A. // J. Am. Ceram. Soc. 2014. V. 97. P. 3349.
  22. Robie R., Hemingway B., Fisher J. Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 bar (105Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. Washington, 1995. 456 p.
  23. Chase M.W., NIST-JANAF Thermochemical Tables, J. Physical and Chemical Reference Data, N9, ACS/ AIP/NIST, 1998.
  24. Yang S., Anderko A., Riman R.E., Navrotsky A. // Acta Mater. 2021. V. 220. P. 117289.
  25. Navrotsky A., Koryttseva A. // Molecules. 2023. V. 28. P. 4623. https://doi.org/10.3390/molecules28124623
  26. Gibson, L. D.; Jayanthi, K.; Yang, S. et al. // J. Phys. Chem. C. 2022. V. 126. P. 18952.
  27. McCormack S.J., Navrotsky A. // Acta Materialia. 2021. V. 202. P. 1. doi: 10.1016/j.actamat.2020.10.043.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).