MODELING OF GOLD IN THE MODEL OF EMBEDDED ATOM
- Authors: Belashchenko D.K1
-
Affiliations:
- MISIS University of Science and Technology
- Issue: Vol 99, No 9 (2025)
- Pages: 1394-1402
- Section: ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- Submitted: 25.12.2025
- Published: 15.09.2025
- URL: https://journals.rcsi.science/0044-4537/article/view/362388
- DOI: https://doi.org/10.7868/S3034553725090135
- ID: 362388
Cite item
Abstract
Using pair correlation functions of liquid gold Waseda, the pair contributions to the EAM potentials at temperatures of 1423, 1573, 1773, and 1973 K are calculated using the Schommers algorithm. The parameters of the embedded potential were found taking into account the temperature dependence of the density, energy and compressibility of liquid gold. At 1973 K the diffraction data are not accurate enough for further calculations. It is shown that the EAM potential calculated at 1423 K allows us to build sufficiently adequate models of gold at temperatures up to 3000 K. The calculated self-diffusion coefficients are 25–30% lower than those obtained on the basis of the effective medium theory, but in general the computer calculations of atomic mobility agree quite well.
About the authors
D. K Belashchenko
MISIS University of Science and Technology
Email: dkbel75@gmail.com
Moscow, Russia
References
- Schommers W. // Phys. Rev. 1983. V. 28A. P. 3599.
- Henderson R.L. // Phys. Lett. A. 1974. V. 49. P. 197.
- Chayes J.T., Chayes L. // J. Stat. Physics. 1984. V. 36. № 3–4. P. 471.
- Hendus H. // Z. Naturforschung. 1947. Bd 2a. S. 505.
- Pfannenschmid O. // Ibid. 1960. Bd 15a. S. 603.
- Steeb S., Bek R. // Ibid. 1976. Bd 31a. S. 1348.
- Waseda Y. The Structure of Non-crystalline Materials. Liquids and Amorphous Solids. McGraw-Hill, N.Y., 1980, 325 P.
- Odusole Y.A., Mustapha L.O. // Amer. J. Condens. Matter. Physics. 2017. V. 7(2). P. 33.
- Bogicevic A., Hansen L.B., Lundqvist B.I. // Phys. Rev. E. 1997. V. 55. № 5. P. 5535.
- Min Wu, Jiao Shi, Yefeng Wu, et al. // AIP Advances. 2020. V. 10. 045038.
- Kaminski M., Jurkiewicz K., Burian A., Brodka A. // J. Appl. Cryst. 2020. V. 53. P. 1.
- Белашенко Д.К. // Металлы. 1989. № 3. C. 136.
- Arblaster J.W. // J. Phase Equilibria and Diffusion; Materials Park. 2016. V. 37. № 2. P. 229.
- Khvan A.V., Uspenskaya I.A., Aristova N.M. et al. // CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2020. V. 68. 101724.
- Kaschnitz E., Nussbaumer G., Potilacher G., Jaeger H. // Int. J. Thermophysics. 1993. V. 14. № 2. P. 251.
- Paradis P.F., Ishikawa T., Koike N. // Gold Bulletin 2008. 41/3. P. 242.
- Singh R.N., Arafin S., George A.K. // Physica B. 2007. V. 387. P. 344.
- Jacobsen K.W., Norskov J.K., Puska M.J. // Phys. Rev. B. 1987. V. 35. P. 7423.
- Hultgren R., Desai P.D., Hawkins D.T. et al. Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973.
- Pasturel A., Tasci E.S., Sluiter M.H.F., Jakse N. // Phys. Rev. B. 2010. V. 81. 140202R.
- Wang Y., Teitel S., Dellago C. // J. Chem. Phys. 2005. V. 122. 214722.
- Bek R., Steeb S. // Phys. Chem. Liq. 1977. V. 6. P. 113.
- Singh R.N., Arafin A., George A.K. // Physica B. 2007. V. 387. P. 344.
- Weck G., Recoules V., Queyroux J-A. et al. // Phys. Rev. B. 2020. V. 101. 014106.
- Ozaki N., Tanaka K.A., Ono T. et al. // Phys. Plasmas. 2004. V. 11. № 4. P. 1600.
- Swalin R.A. // Acta metallurgica. 1959. V. 7. P. 736.
- Dubinin N. // Metals. 2020. V. 10. P. 1651.
- McLaughlin I.L., Hoshino K., Leung H.C. et al. // Z. Phys. Chem. Neue Folge. 1988. Bd. 156. S. 457.
- Magomedov M.N. // J. Phys. Chem. Solids. 2022. V. 165. 110653.
- Akhmedov E.N. // J. Physics: Conf. Series. 2019. 1348. 012002.
- Магомедов М.Н. // Физика твердого тела. 2024. T. 66. Вып. 10. C. 1641.
- Bhuiyan G.M., Gonzalez L.E., Gonzalez D.J. // Condensed Matter Physics. 2012. V. 15. № 3. 33604.
- Nassour A. // Bull. Mater. Sci. 2016. V. 39. № 5. P. 1339.
- Cai J., Ye Y.Y. // Phys. Rev. B. 1996-II. V. 54. № 12. P. 8398.
- Ercolessi F., Adams A.J. // Europhys. Lett. 1994. V. 26. P. 583.
- Ercolessi F., Parrinello M., Tosatti E. // Philos. Mag. A. 1988. V. 58. P. 213.
- Sheng H.W., Kramer M.J., Cadien A. // Phys. Rev. B. 2011. V. 83. 134118.
- Murin A.V., Shabanova I.N., Kholzakov A.V. // Bulletin of the Russian Academy of Sciences: Physics. 2008. V. 72. № 4. P. 464.
- Ryu S., Cai W. // J. Phys.: Condens. Matter. 2010. V. 22. 055401.
- Krishnamurty S., Shafai G., Kanhere D.G. // arXiv: cond-mat/0612287v1 [cond-mat.stat-mech] 12 Dec 2006.
- Vollath D., Holec D., Fischer F.D. // Beilstein J. Nanotechnol. 2017. V. 8. P. 2221.
- Zhiwei Qiao, Haijun Feng, Jian Zhou // Multinational Journal. 2013. V. 87:1. P. 59.
- Tsuchiya T. // J. Geophys. Res. 2003. V. 108. № B10. P. 2462.
- Jayaraman A., Newton R.C., McDonough J.M. // Phys. Rev. 1967. V. 159. № 3. P. 527.
- Tsui K., Yaoiia K., Imai M. et al. // J. Non-Cryst. Solids. 1990. V. 117/118. № 1. P. 72.
- Falconi S., Lundegaard L.F., Hejny C., McMahon M.I. // Phys. Rev. Lett. 2005. V. 94. P. 125507.
Supplementary files


