MODELING OF GOLD IN THE MODEL OF EMBEDDED ATOM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using pair correlation functions of liquid gold Waseda, the pair contributions to the EAM potentials at temperatures of 1423, 1573, 1773, and 1973 K are calculated using the Schommers algorithm. The parameters of the embedded potential were found taking into account the temperature dependence of the density, energy and compressibility of liquid gold. At 1973 K the diffraction data are not accurate enough for further calculations. It is shown that the EAM potential calculated at 1423 K allows us to build sufficiently adequate models of gold at temperatures up to 3000 K. The calculated self-diffusion coefficients are 25–30% lower than those obtained on the basis of the effective medium theory, but in general the computer calculations of atomic mobility agree quite well.

About the authors

D. K Belashchenko

MISIS University of Science and Technology

Email: dkbel75@gmail.com
Moscow, Russia

References

  1. Schommers W. // Phys. Rev. 1983. V. 28A. P. 3599.
  2. Henderson R.L. // Phys. Lett. A. 1974. V. 49. P. 197.
  3. Chayes J.T., Chayes L. // J. Stat. Physics. 1984. V. 36. № 3–4. P. 471.
  4. Hendus H. // Z. Naturforschung. 1947. Bd 2a. S. 505.
  5. Pfannenschmid O. // Ibid. 1960. Bd 15a. S. 603.
  6. Steeb S., Bek R. // Ibid. 1976. Bd 31a. S. 1348.
  7. Waseda Y. The Structure of Non-crystalline Materials. Liquids and Amorphous Solids. McGraw-Hill, N.Y., 1980, 325 P.
  8. Odusole Y.A., Mustapha L.O. // Amer. J. Condens. Matter. Physics. 2017. V. 7(2). P. 33.
  9. Bogicevic A., Hansen L.B., Lundqvist B.I. // Phys. Rev. E. 1997. V. 55. № 5. P. 5535.
  10. Min Wu, Jiao Shi, Yefeng Wu, et al. // AIP Advances. 2020. V. 10. 045038.
  11. Kaminski M., Jurkiewicz K., Burian A., Brodka A. // J. Appl. Cryst. 2020. V. 53. P. 1.
  12. Белашенко Д.К. // Металлы. 1989. № 3. C. 136.
  13. Arblaster J.W. // J. Phase Equilibria and Diffusion; Materials Park. 2016. V. 37. № 2. P. 229.
  14. Khvan A.V., Uspenskaya I.A., Aristova N.M. et al. // CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2020. V. 68. 101724.
  15. Kaschnitz E., Nussbaumer G., Potilacher G., Jaeger H. // Int. J. Thermophysics. 1993. V. 14. № 2. P. 251.
  16. Paradis P.F., Ishikawa T., Koike N. // Gold Bulletin 2008. 41/3. P. 242.
  17. Singh R.N., Arafin S., George A.K. // Physica B. 2007. V. 387. P. 344.
  18. Jacobsen K.W., Norskov J.K., Puska M.J. // Phys. Rev. B. 1987. V. 35. P. 7423.
  19. Hultgren R., Desai P.D., Hawkins D.T. et al. Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973.
  20. Pasturel A., Tasci E.S., Sluiter M.H.F., Jakse N. // Phys. Rev. B. 2010. V. 81. 140202R.
  21. Wang Y., Teitel S., Dellago C. // J. Chem. Phys. 2005. V. 122. 214722.
  22. Bek R., Steeb S. // Phys. Chem. Liq. 1977. V. 6. P. 113.
  23. Singh R.N., Arafin A., George A.K. // Physica B. 2007. V. 387. P. 344.
  24. Weck G., Recoules V., Queyroux J-A. et al. // Phys. Rev. B. 2020. V. 101. 014106.
  25. Ozaki N., Tanaka K.A., Ono T. et al. // Phys. Plasmas. 2004. V. 11. № 4. P. 1600.
  26. Swalin R.A. // Acta metallurgica. 1959. V. 7. P. 736.
  27. Dubinin N. // Metals. 2020. V. 10. P. 1651.
  28. McLaughlin I.L., Hoshino K., Leung H.C. et al. // Z. Phys. Chem. Neue Folge. 1988. Bd. 156. S. 457.
  29. Magomedov M.N. // J. Phys. Chem. Solids. 2022. V. 165. 110653.
  30. Akhmedov E.N. // J. Physics: Conf. Series. 2019. 1348. 012002.
  31. Магомедов М.Н. // Физика твердого тела. 2024. T. 66. Вып. 10. C. 1641.
  32. Bhuiyan G.M., Gonzalez L.E., Gonzalez D.J. // Condensed Matter Physics. 2012. V. 15. № 3. 33604.
  33. Nassour A. // Bull. Mater. Sci. 2016. V. 39. № 5. P. 1339.
  34. Cai J., Ye Y.Y. // Phys. Rev. B. 1996-II. V. 54. № 12. P. 8398.
  35. Ercolessi F., Adams A.J. // Europhys. Lett. 1994. V. 26. P. 583.
  36. Ercolessi F., Parrinello M., Tosatti E. // Philos. Mag. A. 1988. V. 58. P. 213.
  37. Sheng H.W., Kramer M.J., Cadien A. // Phys. Rev. B. 2011. V. 83. 134118.
  38. Murin A.V., Shabanova I.N., Kholzakov A.V. // Bulletin of the Russian Academy of Sciences: Physics. 2008. V. 72. № 4. P. 464.
  39. Ryu S., Cai W. // J. Phys.: Condens. Matter. 2010. V. 22. 055401.
  40. Krishnamurty S., Shafai G., Kanhere D.G. // arXiv: cond-mat/0612287v1 [cond-mat.stat-mech] 12 Dec 2006.
  41. Vollath D., Holec D., Fischer F.D. // Beilstein J. Nanotechnol. 2017. V. 8. P. 2221.
  42. Zhiwei Qiao, Haijun Feng, Jian Zhou // Multinational Journal. 2013. V. 87:1. P. 59.
  43. Tsuchiya T. // J. Geophys. Res. 2003. V. 108. № B10. P. 2462.
  44. Jayaraman A., Newton R.C., McDonough J.M. // Phys. Rev. 1967. V. 159. № 3. P. 527.
  45. Tsui K., Yaoiia K., Imai M. et al. // J. Non-Cryst. Solids. 1990. V. 117/118. № 1. P. 72.
  46. Falconi S., Lundegaard L.F., Hejny C., McMahon M.I. // Phys. Rev. Lett. 2005. V. 94. P. 125507.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).