Photocatalytic oxidative degradation of diclofenac in water using iron-containing metal-ceramic composites under irradiation and ozonation conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The photocatalytic activity of iron-containing silicon nitride-based metal-ceramic composites in the process of oxidative degradation of the pharmaceutical pollutant diclofenac (DCF) has been investigated. The composites were obtained by nitriding ferrosilicon without additives and ferrosilicon with shungite (modifier for SiC production) in combustion mode. It is noted that the use of urea allows to additionally modify the ceramic matrix of composites with semiconducting phases (Fe2O3, C3N4) capable of absorption in the region of near-UV and visible light. The phase composition has been established, morphological features and optical properties of the composites have been studied. The acid-base properties of the surface have been evaluated. Adsorption and catalytic activity of composites in the absence and with H2O2 addition under UV irradiation (Fenton photochemical process), under ozonation conditions under UV and visible light irradiation were studied. The highest degree of DCF degradation was found when heterogeneous photocatalysis and Fenton process were combined (84%) and under photocatalytic ozonation conditions (88%). The kinetics of photocatalytic degradation of DCF was investigated using a pseudo-first-order model. The degradation products of DCF were determined GC—MS.

About the authors

V. M. Makarova

National Research Tomsk State University

Email: valerym.a.c@yandex.ru
634050, Tomsk, Russia

L. N. Skvortsova

National Research Tomsk State University

634050, Tomsk, Russia

K. A. Dychko

National Research Tomsk State University

634050, Tomsk, Russia

O. G. Kryukova

Tomsk Scientific Center SB RAS

634021, Tomsk, Russia

References

  1. Hernández-Tenorio R., González-Juárez E., Guzmán-Mar J.L. et al. // J. of Hazardous Materials Advances. 2022. V. 8. P. 100172. https://doi.org/10.1016/j.hazadv.2022.100172
  2. O’Flynn, D., Lawler J., Yusuf A. et al. // Anal. Methods. 2021. V. 13. P. 575. https://doi.org/10.1039/D0AY02098B
  3. Tiedeken E.J., Tahar A., McHugh B. et al. // Science of The Total Environment. 2017. V. 574 P. 1140. 10.1016/j.scitotenv.2016.09.084' target='_blank'>https://doi: 10.1016/j.scitotenv.2016.09.084
  4. Fernandes J.P., Almeida C.M.R, Salgado M.A. et al. // Toxics. 2021. V. 9. P. 257. 10.3390/toxics9100257' target='_blank'>https://doi: 10.3390/toxics9100257
  5. Wilkinson J.L., Boxall A.B.A., Kolpin D.W. et al. // Proceedings of the National Academy of Sciences. 2022. V. 119. № 8. P. 2113947119. 10.1073/pnas.2113947119' target='_blank'>https://doi: 10.1073/pnas.2113947119
  6. Guillossou R., Le Roux J., Mailler R. et al. // Chemosphere. 2019. V. 218. P. 1050. 10.1016/j.chemosphere.2018.11.182' target='_blank'>https://doi: 10.1016/j.chemosphere.2018.11.182
  7. Ma D., Yi H., Lai C. et al. // Ibid. 2021. V. 275. P. 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
  8. Suhag M.H., Khatun A., Tateishi I. et al. // ACS Omega. 2023. V. 8. P. 11824. https://doi.org/10.1021/acsomega.2c06678
  9. Yu Y., Yan L., Cheng J. et al. // Chemical Engineering Journal. 2017. V. 325 P. 647. https://doi.org/10.1016/j.cej.2017.05.092
  10. Ershov D.S., Besprozvannykh N.V., Sinel’shchikova O.Y. // Russ J. Inorg. Chem. 2022. V. 67. P. 105. https://doi.org/10.1134/S003602362201003X
  11. Zhang L., Hao J., Jia Z. et al. // J. Solid State Chem. 2023. V. 325. P. 124167. https://doi.org/10.1016/j.jssc.2023.124167
  12. Su S., Xing Z., Zhang S. et al. // Appl. Surf. Sci. 2021. V. 537. P. 147890. https://doi.org/10.1016/j.apsusc.2020.147890
  13. Sonhtag C., Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. [S.l.]: IWA Publishing, 2012. 320 p.
  14. Li X., Chen W., Tang Y. et al. // Chemosphere. 2018. V. 206. P. 615. https://doi.org/10.1016/j.chemosphere.2018.05.066
  15. Moreira N.F.F., Sousa J.M., Macedo G. et al. // Water Res. 2016. V. 94. P. 10. https://doi.org/10.1016/j.watres.2016.02.003
  16. Valério A., Wang J., Tong S. et al. // Chem. Eng. Process. 2020. V. 149. P. 107838. https://doi.org/10.1016/j.cep.2020.107838
  17. Camera-Roda G., Loddo V., Palmisano L. et al. // Appl. Catal. B: Environ. 2019. V. 253. P. 69. https://doi.org/10.1016/j.apcatb.2019.04.048
  18. Skvortsova L.N., Kazantseva K.I., Bolgaru K.A. et al. // Rev. and adv. in chem. 2022. V. 12. P. 289. https://doi.org/10.1134/S2634827623700137
  19. Sathishkumar P., Meena R.A.A., Palanisami T. et al. // Sci. Total Environ. 2020. P. 134057. https://doi.org/10.1016/j.scitotenv.2019.134057
  20. Simon E., Duffek A., Stahl C. et al. // Environ. Int. 2022. V. 159. P. 107033. https://doi.org/10.1016/j.envint.2021.107033
  21. Zhu J., Zhang G., Xian G. et al. // Front. Chem. 2019. V. 7. P. 796. https://doi.org/10.3389/fchem.2019.00796
  22. Vitiello G., Iervolino G., Imparato C. et al. // Sci. Total. Environ. 2021. V. 762. P. 143066. doi: 10.1016/j.scitotenv.2020.143066
  23. Conte F., Tommasi M., Degreli S.N. et al. // ChemPhotoChem. 2023. V. 8. P. 202300177. https://doi.org/10.1002/cptc.202300177
  24. Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. СПб.: Лань, 2021. 284 с.
  25. Bauer J. // Phys. Status Solidi. 1977. V. 39. № 2. P. 411. http://dx.doi.org/10.1002/pssa.2210390205
  26. Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. [S. l.]: Wiley-VCH Verlang GmbH & Co. KGaA, 2003. 664 p.
  27. Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001. 216 p.
  28. Pattnaik S.P, Behera A., Martha S. et al. // J. Mater. Sci. 2019. V. 54. P. 5726. 10.1007/s10853-018-03266-x' target='_blank'>https://doi: 10.1007/s10853-018-03266-x
  29. Oppenlander T. Photochemical purification of water and air. Weinheim: Wiley-VCH, 2007. 368 с.
  30. Smaali A., Berkani M., Merouane F. et al. // Chemosphere. 2021. V. 266. P. 129158. https://doi.org/10.1016/j.chemosphere.2020.129158
  31. Bulyga D.V., Evstropiev S.K. // Optics and Spectroscopy. 2022. V. 130. № 9. P. 1176. http://dx.doi.org/10.21883/EOS.2022.09.54839.3617-22

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».