Фотокаталитическая окислительная деструкция диклофенака в воде с применением железосодержащих металлокерамических композитов в условиях облучения и озонирования

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована фотокаталитическая активность железосодержащих металлокерамических композитов на основе нитрида кремния в процессе окислительной деградации фармацевтического загрязнителя диклофенака (DCF). Композиты получены при азотировании ферросилиция без добавок и ферросилиция с шунгитом (модификатор для получения SiC) в режиме горения. Отмечено, что использование мочевины позволяет дополнительно модифицировать керамическую матрицу композитов полупроводниковыми фазами (Fe2O3, C3N4), способными поглощать в области ближнего УФ и видимого света. Установлен фазовый состав, изучены морфологические особенности и оптические свойства композитов. Проведена оценка кислотно-основных свойств поверхности. Изучена адсорбционная и каталитическая активность композитов в отсутствие и с добавкой Н2О2 при УФ-облучении (фотохимический процесс Фентона), в условиях озонирования при облучении УФ и видимым светом. Наибольшая степень деградации DCF установлена при совмещении гетерогенного фотокатализа и процесса Фентона (84%) и в условиях фотокаталитического озонирования (88%). Исследована кинетика фотокаталитической деградации DCF с использованием модели псевдо-первого порядка. Определены продукты деградации DCF методом ГХ-МС.

Об авторах

В. М. Макарова

Национальный исследовательский Томский государственный университет

Email: valerym.a.c@yandex.ru
634050, Томск, Россия

Л. Н. Скворцова

Национальный исследовательский Томский государственный университет

634050, Томск, Россия

К. А. Дычко

Национальный исследовательский Томский государственный университет

634050, Томск, Россия

О. Г. Крюкова

Томский научный центр СО РАН

634021, Томск, Россия

Список литературы

  1. Hernández-Tenorio R., González-Juárez E., Guzmán-Mar J.L. et al. // J. of Hazardous Materials Advances. 2022. V. 8. P. 100172. https://doi.org/10.1016/j.hazadv.2022.100172
  2. O’Flynn, D., Lawler J., Yusuf A. et al. // Anal. Methods. 2021. V. 13. P. 575. https://doi.org/10.1039/D0AY02098B
  3. Tiedeken E.J., Tahar A., McHugh B. et al. // Science of The Total Environment. 2017. V. 574 P. 1140. 10.1016/j.scitotenv.2016.09.084' target='_blank'>https://doi: 10.1016/j.scitotenv.2016.09.084
  4. Fernandes J.P., Almeida C.M.R, Salgado M.A. et al. // Toxics. 2021. V. 9. P. 257. 10.3390/toxics9100257' target='_blank'>https://doi: 10.3390/toxics9100257
  5. Wilkinson J.L., Boxall A.B.A., Kolpin D.W. et al. // Proceedings of the National Academy of Sciences. 2022. V. 119. № 8. P. 2113947119. 10.1073/pnas.2113947119' target='_blank'>https://doi: 10.1073/pnas.2113947119
  6. Guillossou R., Le Roux J., Mailler R. et al. // Chemosphere. 2019. V. 218. P. 1050. 10.1016/j.chemosphere.2018.11.182' target='_blank'>https://doi: 10.1016/j.chemosphere.2018.11.182
  7. Ma D., Yi H., Lai C. et al. // Ibid. 2021. V. 275. P. 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
  8. Suhag M.H., Khatun A., Tateishi I. et al. // ACS Omega. 2023. V. 8. P. 11824. https://doi.org/10.1021/acsomega.2c06678
  9. Yu Y., Yan L., Cheng J. et al. // Chemical Engineering Journal. 2017. V. 325 P. 647. https://doi.org/10.1016/j.cej.2017.05.092
  10. Ershov D.S., Besprozvannykh N.V., Sinel’shchikova O.Y. // Russ J. Inorg. Chem. 2022. V. 67. P. 105. https://doi.org/10.1134/S003602362201003X
  11. Zhang L., Hao J., Jia Z. et al. // J. Solid State Chem. 2023. V. 325. P. 124167. https://doi.org/10.1016/j.jssc.2023.124167
  12. Su S., Xing Z., Zhang S. et al. // Appl. Surf. Sci. 2021. V. 537. P. 147890. https://doi.org/10.1016/j.apsusc.2020.147890
  13. Sonhtag C., Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. [S.l.]: IWA Publishing, 2012. 320 p.
  14. Li X., Chen W., Tang Y. et al. // Chemosphere. 2018. V. 206. P. 615. https://doi.org/10.1016/j.chemosphere.2018.05.066
  15. Moreira N.F.F., Sousa J.M., Macedo G. et al. // Water Res. 2016. V. 94. P. 10. https://doi.org/10.1016/j.watres.2016.02.003
  16. Valério A., Wang J., Tong S. et al. // Chem. Eng. Process. 2020. V. 149. P. 107838. https://doi.org/10.1016/j.cep.2020.107838
  17. Camera-Roda G., Loddo V., Palmisano L. et al. // Appl. Catal. B: Environ. 2019. V. 253. P. 69. https://doi.org/10.1016/j.apcatb.2019.04.048
  18. Skvortsova L.N., Kazantseva K.I., Bolgaru K.A. et al. // Rev. and adv. in chem. 2022. V. 12. P. 289. https://doi.org/10.1134/S2634827623700137
  19. Sathishkumar P., Meena R.A.A., Palanisami T. et al. // Sci. Total Environ. 2020. P. 134057. https://doi.org/10.1016/j.scitotenv.2019.134057
  20. Simon E., Duffek A., Stahl C. et al. // Environ. Int. 2022. V. 159. P. 107033. https://doi.org/10.1016/j.envint.2021.107033
  21. Zhu J., Zhang G., Xian G. et al. // Front. Chem. 2019. V. 7. P. 796. https://doi.org/10.3389/fchem.2019.00796
  22. Vitiello G., Iervolino G., Imparato C. et al. // Sci. Total. Environ. 2021. V. 762. P. 143066. doi: 10.1016/j.scitotenv.2020.143066
  23. Conte F., Tommasi M., Degreli S.N. et al. // ChemPhotoChem. 2023. V. 8. P. 202300177. https://doi.org/10.1002/cptc.202300177
  24. Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. СПб.: Лань, 2021. 284 с.
  25. Bauer J. // Phys. Status Solidi. 1977. V. 39. № 2. P. 411. http://dx.doi.org/10.1002/pssa.2210390205
  26. Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. [S. l.]: Wiley-VCH Verlang GmbH & Co. KGaA, 2003. 664 p.
  27. Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001. 216 p.
  28. Pattnaik S.P, Behera A., Martha S. et al. // J. Mater. Sci. 2019. V. 54. P. 5726. 10.1007/s10853-018-03266-x' target='_blank'>https://doi: 10.1007/s10853-018-03266-x
  29. Oppenlander T. Photochemical purification of water and air. Weinheim: Wiley-VCH, 2007. 368 с.
  30. Smaali A., Berkani M., Merouane F. et al. // Chemosphere. 2021. V. 266. P. 129158. https://doi.org/10.1016/j.chemosphere.2020.129158
  31. Bulyga D.V., Evstropiev S.K. // Optics and Spectroscopy. 2022. V. 130. № 9. P. 1176. http://dx.doi.org/10.21883/EOS.2022.09.54839.3617-22

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».