Термодинамические свойства титаната иттербия
- Авторы: Гуськов А.В.1, Гагарин П.Г.1, Гуськов В.Н.1, Гавричев К.С.1
-
Учреждения:
- Институт общей и неорганической химии им. Н. С. Курнакова РАН
- Выпуск: Том 99, № 2 (2025)
- Страницы: 184-194
- Раздел: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- Статья получена: 19.05.2025
- Статья одобрена: 19.05.2025
- Статья опубликована: 20.05.2025
- URL: https://journals.rcsi.science/0044-4537/article/view/292406
- DOI: https://doi.org/10.31857/S0044453725020029
- EDN: https://elibrary.ru/DEOPTM
- ID: 292406
Цитировать
Аннотация
Впервые измерена изобарная теплоемкость синтезированного и охарактеризованного методами РФА, РЭМ и ЭДА однофазного образца титаната иттербия структурного типа пирохлора в области температур 2–1869 K. Подтверждено существование магнитного превращения при <20 K и отсутствие структурных превращений во всей области существования Yb2Ti2O7. Рассчитаны термодинамические функции – энтропия и приращение энтальпии, а также свободная энергия Гиббса образования Yb2Ti2O7 из элементов и простых оксидов при 298.15 K. Проведена оценка вклада в теплоемкость аномалии Шоттки.
Ключевые слова
Полный текст

Об авторах
А. В. Гуськов
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Email: guskov@igic.ras.ru
Россия, 119991 Москва
П. Г. Гагарин
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Email: guskov@igic.ras.ru
Россия, 119991 Москва
В. Н. Гуськов
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Автор, ответственный за переписку.
Email: guskov@igic.ras.ru
Россия, 119991 Москва
К. С. Гавричев
Институт общей и неорганической химии им. Н. С. Курнакова РАН
Email: guskov@igic.ras.ru
Россия, 119991 Москва
Список литературы
- Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
- Ross K.A., Savary L., Gaulin B.D. et al. // Phys. Rev. X. 2011. V. 1. 021002 http://doi.org/10.1103/PhysRevX.1.021002
- Tokiwa Y., Yamashita T., Udagawa M. et al. // Nat. Commun. 2016. V. 7. 10807. https://doi.org/10.1038/ncomms10807
- Ramirez A., Hayashi A., Cava R. et al. // Nature. 1999. V. 399. P. 333. https://doi.org/10.1038/20619
- Bramwell S.T., Harris M.J., den Hertog B.C. et al. // Phys. Rev. Lett. 2001. V. 87. 047205. https://doi.org/10.1103/PhysRevLett.87.047205
- Scheie A., Kindervater J., Säubert S. et al. // Phys. Rev. Lett. 2017. V. 119. 127201. https://doi.org/10.1103/PhysRevLett.119.127201
- Yaouanc A., de Réotier P.D., Marin C. et al. // Phys. Rev. B. V. 84. 172408. https://doi.org/10.1103/PhysRevB.84.172408
- Blöte H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/0031-8914(69)90187-6
- D’Ortenzio R.M., Dabkowska H.A., Dunsiger S.R. et al. // Phys. Rev. B. 2013. V. 88. 134428. https://doi.org/10.1103/PhysRevB.88.134428
- Hamachi N., Yasui Y., Araki K. et al. // AIP Advances. 2016. V. 6. 055707. https://doi.org/10.1063/1.4944337
- Bonville P., Hodges J.A., Bertin E. et al. // ICAME. 2003. Springer. Dordrecht. https://doi.org/10.1007/978-1-4020-2852-6_17
- Aughterson R.D., Lumpkin G.R., Bedfort A. et al. // Ceram. Int. 2023. V. 49. P. 11149. https://doi.org/10.1016/j.ceramint.2022.11.311
- Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
- Teng Z., Tan Y., Zeng S. et al. // J. Europ. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/j.jeurceramsoc.2021.01.01
- Chung C.-K., O’Quinn, Neuefeind J.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/ j.actamat.2019.09.022
- Lian J., Chen J., Wang L.M. et al. // Phys. Rev. B. 2003. V. 68. 134107. https://doi.org/PhysRevB.68.134107
- Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Sol. State Chem, 2004. V. 177. P. 1858. https://doi.org/ j.jssc.2004.01.009
- Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310 [Reznitsky L.A. // Inorg. mater. 1993. V. 29. P. 1310. On Russian].
- Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // ЖНХ. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040 [Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. // Russ. J. Inorgan. Chem. 2019. V. 64. P. 1265. https://doi.org/10.1134/S0036023619100048].
- Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
- Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
- Farmer J.M., Boatner L.A., Chakouakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016/j.jallcom.2014.03.153
- Li Q.J., Xu L.M., Fan C. et al. // J. Crystal Growth. V. 377. P. 96. https://doi.org/10.1016/j.jcrysgro.2013.04.048
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–2094. https://doi.org/10.1021/je400316m
- Tari A. The specific heat of matter at low temperatures // Imperial College Press. 2003. 211 p. https://doi.org/10.1142/9781860949395_0006
- Li S.J., Che H.L., Wu J.C. et al. // AIP Advances. 2018. V. 8. 055705. https://doi.org/10.1063/1.5005988
- Westrum E.F., Jr. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
- Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
- Gruber J., Westrum E.F. // J. Chem. Phys. 1982. V. 76. P. 4600–4605. https://doi.org/10.1007/978-1-4613-3406-4_55
- Saha S., Singh S., Dkhil B. et al. // Physical Review B. 2008. V. 78. P. 214102–1–214102–10. https://doi.org/10.1103/PhysRevB.78.214102
- Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Refer. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
- Chase M.W., Jr. // J. Phys. Chem. Refer. Data Monograph No. 9 NIST-JANAF. Washington DC, 1998.
- Глушко В.П. Термические константы веществ. Справочник. Москва, 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349 [Glushko V.P. Thermal constants of substances. Reference book. Moscow 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349].
Дополнительные файлы
