Thermodynamic properties of ytterbium titanate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The isobaric heat capacity of a single-phase sample of ytterbium titanate of pyrochlore structural type synthesized and characterized by XRD, SEM, and EDX methods in the temperature range 2–1869 K is measured for the first time. The existence of magnetic transformation at < 20 K and the absence of structural transformations in the entire region of existence of Yb2Ti2O7 are confirmed. Thermodynamic functions, viz. the entropy and the enthalpy increment and the Gibbs free energy of formation of Yb2Ti2O7 from elements and binary oxides at 298.15 K are calculated. The contribution to the heat capacity of the Schottky anomaly is estimated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Guskov

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Ресей, Moscow, 119991

P. Gagarin

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Ресей, Moscow, 119991

V. Guskov

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: guskov@igic.ras.ru
Ресей, Moscow, 119991

K. Gavrichev

N. S. Kurnakov Institute General and Inorganic Chemistry, Russian Academy of Sciences

Email: guskov@igic.ras.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  2. Ross K.A., Savary L., Gaulin B.D. et al. // Phys. Rev. X. 2011. V. 1. 021002 http://doi.org/10.1103/PhysRevX.1.021002
  3. Tokiwa Y., Yamashita T., Udagawa M. et al. // Nat. Commun. 2016. V. 7. 10807. https://doi.org/10.1038/ncomms10807
  4. Ramirez A., Hayashi A., Cava R. et al. // Nature. 1999. V. 399. P. 333. https://doi.org/10.1038/20619
  5. Bramwell S.T., Harris M.J., den Hertog B.C. et al. // Phys. Rev. Lett. 2001. V. 87. 047205. https://doi.org/10.1103/PhysRevLett.87.047205
  6. Scheie A., Kindervater J., Säubert S. et al. // Phys. Rev. Lett. 2017. V. 119. 127201. https://doi.org/10.1103/PhysRevLett.119.127201
  7. Yaouanc A., de Réotier P.D., Marin C. et al. // Phys. Rev. B. V. 84. 172408. https://doi.org/10.1103/PhysRevB.84.172408
  8. Blöte H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/0031-8914(69)90187-6
  9. D’Ortenzio R.M., Dabkowska H.A., Dunsiger S.R. et al. // Phys. Rev. B. 2013. V. 88. 134428. https://doi.org/10.1103/PhysRevB.88.134428
  10. Hamachi N., Yasui Y., Araki K. et al. // AIP Advances. 2016. V. 6. 055707. https://doi.org/10.1063/1.4944337
  11. Bonville P., Hodges J.A., Bertin E. et al. // ICAME. 2003. Springer. Dordrecht. https://doi.org/10.1007/978-1-4020-2852-6_17
  12. Aughterson R.D., Lumpkin G.R., Bedfort A. et al. // Ceram. Int. 2023. V. 49. P. 11149. https://doi.org/10.1016/j.ceramint.2022.11.311
  13. Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
  14. Teng Z., Tan Y., Zeng S. et al. // J. Europ. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/j.jeurceramsoc.2021.01.01
  15. Chung C.-K., O’Quinn, Neuefeind J.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/ j.actamat.2019.09.022
  16. Lian J., Chen J., Wang L.M. et al. // Phys. Rev. B. 2003. V. 68. 134107. https://doi.org/PhysRevB.68.134107
  17. Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Sol. State Chem, 2004. V. 177. P. 1858. https://doi.org/ j.jssc.2004.01.009
  18. Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310 [Reznitsky L.A. // Inorg. mater. 1993. V. 29. P. 1310. On Russian].
  19. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // ЖНХ. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040 [Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. // Russ. J. Inorgan. Chem. 2019. V. 64. P. 1265. https://doi.org/10.1134/S0036023619100048].
  20. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  21. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
  22. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  23. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  24. Farmer J.M., Boatner L.A., Chakouakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016/j.jallcom.2014.03.153
  25. Li Q.J., Xu L.M., Fan C. et al. // J. Crystal Growth. V. 377. P. 96. https://doi.org/10.1016/j.jcrysgro.2013.04.048
  26. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https://doi.org/10.1016/j.calphad.2018.02.001
  27. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–2094. https://doi.org/10.1021/je400316m
  28. Tari A. The specific heat of matter at low temperatures // Imperial College Press. 2003. 211 p. https://doi.org/10.1142/9781860949395_0006
  29. Li S.J., Che H.L., Wu J.C. et al. // AIP Advances. 2018. V. 8. 055705. https://doi.org/10.1063/1.5005988
  30. Westrum E.F., Jr. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
  31. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
  32. Gruber J., Westrum E.F. // J. Chem. Phys. 1982. V. 76. P. 4600–4605. https://doi.org/10.1007/978-1-4613-3406-4_55
  33. Saha S., Singh S., Dkhil B. et al. // Physical Review B. 2008. V. 78. P. 214102–1–214102–10. https://doi.org/10.1103/PhysRevB.78.214102
  34. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Refer. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
  35. Chase M.W., Jr. // J. Phys. Chem. Refer. Data Monograph No. 9 NIST-JANAF. Washington DC, 1998.
  36. Глушко В.П. Термические константы веществ. Справочник. Москва, 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349 [Glushko V.P. Thermal constants of substances. Reference book. Moscow 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. DSC/TG of ytterbium titanate precursor.

Жүктеу (144KB)
3. Fig. 2. Surface morphology of ytterbium titanate.

Жүктеу (684KB)
4. Fig. 3. Diffraction pattern of a sample of ytterbium titanate, structural type Fm3m, a = 10.032(2) Å, CuKα-radiation, λ = 1.5418 Å.

Жүктеу (104KB)
5. Fig. 4. Experimental heat capacity of Yb2Ti2O7 (pyrochlore), P = 101.3 kPa. The insets show the areas where the results of relaxation and adiabatic (2–45 K), adiabatic and differential scanning (310–350 K) calorimetry measurements are joined.

Жүктеу (224KB)
6. Fig. 5. Comparison of excess heat capacity: 1 – difference between the heat capacities of Yb2Ti2O7 and Lu2Ti2O7 [31]; 2 – calculation using equation 2 (the heat capacity of gadolinium oxide is corrected to take into account the magnetic contribution and the contribution of the Schottky anomaly); 3 – calculation of the Schottky anomaly from spectral data on Stark levels (0, 388, 595, 1021 cm–1) [32].

Жүктеу (121KB)
7. Fig. 6. Molar heat capacity of Yb2Ti2O7: 1 – measured by DSC and 2 – calculated by Neumann–Kopp from the heat capacities of simple oxides.

Жүктеу (117KB)

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».