Исследование спектров электронных переходов в малых кластерах пигмента желтого светопрочного 2 “З”

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведены расчеты электронных спектров поглощения в видимой области кластеров пигмента желтого светопрочного 2 “З”, содержащих 1, 2 и 4 молекулы. Для оптимизации геометрии использованы методы PBEh-3c и B3LYP-D4/def2-SVPD. Результаты, полученные методом B3LYP-D4/def2-SVPD, лучшим образом коррелируют с экспериментальными данными. Расчеты спектральных характеристик осуществлялись методами TD-DFT и sTD-DFT с функционалом PBE0 и базисным набором def2-SVPD. Посредством анализа естественных переходных орбиталей (NTO) и изменения электронной плотности при образовании возбужденных состояний исследуемых кластеров показано, что основной вклад в спектральные линии видимого диапазона дает перенос плотности с ароматических колец на нитрогруппу и сопряженную систему связей в центре молекулы. При этом для кристаллического состояния вещества все возбужденные состояния являются делокализованными и основной вклад в межмолекулярный перенос электронной плотности вносит образование экситонов.

Об авторах

А. А. Дегтярев

Тамбовский государственный технический университет

Автор, ответственный за переписку.
Email: ad.dycost@gmail.com
Россия, 392000, Тамбов

Д. П. Ростова

Тамбовский государственный технический университет

Email: ad.dycost@gmail.com
Россия, 392000, Тамбов

Т. П. Дьячкова

Тамбовский государственный технический университет

Email: ad.dycost@gmail.com
Россия, 392000, Тамбов

А. В. Тришина

Тамбовский государственный технический университет

Email: ad.dycost@gmail.com
Россия, 392000, Тамбов

Список литературы

  1. Лаптев Н.Г., Богословский А.М. Химия красителей. М.: Химия, 1970. 424 с.
  2. Whitaker A. // Zeitschrift für Kristallographie – Crystalline Materials. 1983. V. 163. P. 19. https://doi.org/10.1524/zkri.1983.163.14.19
  3. Венкатараман К. Химия синтетических красителей. Т. 3. Л.: Химия, 1974. 464 с.
  4. Венкатараман К. Химия синтетических красителей. Т. 4. Л.: Химия, 1975. 488 с.
  5. Ибраев Н.Х., Селиверстова Е.В., Артюхов В.Я. // Изв. вузов. Физика. 2014. Т. 57. № 9. С. 9.
  6. Whitaker A. // J. of the Society of Dyers and Colourists. 1983. V. 99. P. 121.
  7. Grimme S., Brandenburg J.G., Bannwarth C., Hansen A. // J. of Chemical Physics. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
  8. Lee C., Yang W., Parr R.G. // Phys. Rev B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  9. Caldeweyher E., Ehlert S., Hansen A. // J. of Chemical Physics. 2019. V. 150. № 15. P. 154122. https://doi.org/10.1063/1.5090222
  10. Rappoport D., Furche F. // Ibid. 2010. V. 133. № 13. P. 134105-11. https://doi.org/10.1063/1.3484283
  11. Runge E., Gross E.K.U. // Physical Review Letters. 1984. V. 52. № 12. P. 997. https://doi.org/10.1103/physrevlett.52.997
  12. Bannwarth C., Grimme S. // Computational and Theoretical Chemistry. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
  13. De Wergifosse M., Seibert J., Grimme S. // The J. of Chemical Physics. 2020. V. 153. № 8. P. 084116. https://doi.org/10.1063/5.0020543
  14. Perdew J.B., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982. https://doi.org/10.1063/1.472933
  15. Jacquemin D., Perpète E.A., Scuseria G.E. et al. // J. of Chemical Theory and Computation. 2008. V. 4. № 1. P. 123. https://doi.org/10.1021/ct700187z
  16. Jacquemin D., Planchat A., Adamo C., Mennucci B. // J.of Chemical Theory and Computation. 2012. V. 8. № 7. P. 2359. https://doi.org/10.1021/ct300326f
  17. Jacquemin D., Perpète E.A., Ciofini I., Adamo C. // Theoretical Chemistry Accounts. 2008. V. 120. № 4–6. P. 405. https://doi.org/10.1007/s00214-008-0424-9
  18. Han J., Liu X., Sun C. et al. // RSC Advances. 2018. V. 8. № 52. P. 29589. https://doi.org/10.1039/c8ra05812a
  19. Tsai H.-H.G., Sun H.-L.S., Tan C.-J. // The J. of Physical Chemistry A. 2010. V. 114. № 12. P. 4065. https://doi.org/10.1021/jp100022y
  20. Mahamiya V., Bhattacharyya P., Shukla A. // ACS Omega. 2022. V. 7. P. 48261. https://doi.org/10.1021/acsomega.2c06373
  21. Rappoport D., Furche F. // The Journal of Chemical Physics. 2010. V. 133. № 13. P. 134105. 10.1063/1.3484283' target='_blank'>https://doi.org/doi: 10.1063/1.3484283.
  22. Mera-Adasme R., Xu W.-H., Sundholm D., Mendizabal F. // Physical Chemistry Chemical Physics. 2016. V. 18. № 40. P. 27877. 10.1039/c6cp04627d' target='_blank'>https://doi.org/doi: 10.1039/c6cp04627d.
  23. Neese F. // WIREs Comput Mol Sci. 2017. V. 8. № 1. P. e1327. https://doi.org/10.1002/wcms.1327
  24. Allouche A.R. // J. of Computational Chemistry. 2011. V. 32. P. 174. https://doi.org/10.1002/jcc.21600
  25. Berraud-Pache R., Neese F., Bistoni G., Izsák R. // J. Chem. Theory Comput. 2020. V. 16. № 1. P. 564. https://doi.org/10.1021/acs.jctc.9b00559
  26. Martin R.L. // The J. of Chemical Physics. 2003. V. 118. № 11. P. 4775. https://doi.org/10.1063/1.1558471

© А.А. Дегтярев, Д.П. Ростова, Т.П. Дьячкова, А.В. Тришина, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах