CALPHAD Modelling of Ag–Pd–Sn Ternary System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

CALPHAD modelling of the Ag–Pd–Sn ternary system has been performed. The disordered phases, the melt and the fcc phase were described using the substitutional solution model. Sublattice models were used to describe intermetallic compounds and the ternary phase. The two-sublattice model (Ag,Pd)4(Ag, Sn) used for the ternary phase made it possible to reproduce the inclination of its homogeneity range. The results of the thermodynamic calculation of the Ag–Pd–Sn system are in good agreement with the experimental data on phase equilibria and enthalpies of formation of the liquid. The agreement with the data on the partial Gibbs energy of tin in the liquid is somewhat worse.

Sobre autores

A. Pavlenko

Department of Chemistry, Lomonosov Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

G. Zhmurko

Department of Chemistry, Lomonosov Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

E. Kabanova

Department of Chemistry, Lomonosov Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

M. Kareva

Department of Chemistry, Lomonosov Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

E. Ptashkina

Department of Chemistry, Lomonosov Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

V. Kuznetsov

Department of Chemistry, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vnk@general.chem.msu.ru
Moscow, Russia

Bibliografia

  1. Shin H.-J., Kwon Y.H., Seol H.-J. // J. Mech. Behav. Biomed. Mater. 2020. V. 107. P. 103728. https://doi.org/10.1016/j.jmbbm.2020.103728
  2. Zhang R., Peng M., Ling L. et al. // Chem. Eng. Sci. 2019. V. 199. P. 64–78. https://doi.org/10.1016/j.ces.2019.01.018
  3. Zerdoumi R., Armbrüster M. // ACS Appl. Energy Mater. 2021. V. 4. № 10. P. 11279. https://doi.org/10.1021/acsaem.1c02119
  4. Lee C.Y., Yang S.P., Yang C.H. et al. // Surf. Coat. Technol. 2020. V. 395. P. 125879. https://doi.org/10.1016/j.surfcoat.2020.125879
  5. Sundman B., Lukas H.L., Fries S.G. Computational Thermodynamics: The Calphad Method. New York: Cambridge University Press, 2007. C. 313.
  6. Pavlenko A.S., Ptashkina E.A., Kabanova E.G. et al. // Calphad. 2023. V. 81. P. 102533. https://doi.org/10.1016/j.calphad.2023.102533
  7. Laurie G.H., Pratt. J.N. // J. Chem. Soc., Faraday Trans. 1964. V. 60. P. 1391–1401. https://doi.org/10.1039/TF9646001391
  8. Luef C., Paul A., Flandorfer H. et al. // J. Alloys Compd. 2005. V. 391. P. 67–76. https://doi.org/10.1016/j.jallcom.2004.08.056
  9. Pavlenko A.S., Kabanova E.G., Kuznetsov V.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 13. P. 2691. https://doi.org/10.1134/s0036024420130178
  10. Thermo-Calc Software PURE5/SGTE Pure Element Database. https://thermocalc.com/about-us/methodology/the-calphad-methodology/assessment-of-thermodynamic-data/
  11. Ghosh G., Kantner C., Olson G.B. // J. Phase Equilibria. 1999. V. 20. № 3. 295. https://doi.org/10.1361/105497199770335811
  12. Gierlotka W., Huang Y.C., Chen S.W. // Metall. Mater. Trans. A. 2008. V. 39. № 13. P. 3199. https://doi.org/10.1007/s11661-008-9671-6
  13. Vassilev G., Gandova V., Milcheva N. et al. // Calphad. 2013. V. 43. P. 133. https://doi.org/10.1016/j.calphad.2013.03.003
  14. Cui S., Wang J., You Z. et al. // Intermetallics. 2020. V. 126. P. 106945. https://doi.org/10.1016/j.intermet.2020.106945
  15. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
  16. Toop G.W. // Trans. Metall. Soc. AIME. 1965. V. 233. № 5. P. 850.
  17. Andersson J.-O., Helander T., Höglund L. et al. // Calphad. 2002. V. 26. № 2. P. 273. https://doi.org/10.1016/s0364-5916(02)00037-8
  18. Pavlenko A.S., Ptashkina E.A., Zhmurko G.P. et al. // Rus. J. Phys. Chem. A. 2023. V. 97. P. 42. https://doi.org/10.1134/S0036024423010235
  19. Pavlenko A.S., Kabanova E.G., Kareva M.A. et al. // Materials. 2023. V. 16. № 4. P. 1690. https://doi.org/10.3390/ma16041690
  20. Kuznetsov V.N., Kabanova E.G. // Calphad. 2015. V. 100. № 51. P. 346. https://doi.org/10.1016/j.calphad.2015.01.011
  21. Cui S., Wang J., Jung I.H. // Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 2022. V. 53. № 12. P. 4296. https://doi.org/10.1007/s11661-022-06825-9

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (418KB)
3.

Baixar (209KB)
4.

Baixar (147KB)
5.

Baixar (87KB)

Declaração de direitos autorais © А.С. Павленко, Г.П. Жмурко, Е.Г. Кабанова, М.А. Карева, Е.А. Пташкина, В.Н. Кузнецов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies