Obtaining Methanol from CO2 on Cu–Zn/Al2O3 and Cu–Zn/SiO2 Catalysts: Effect of the Support and Conditions of the Reaction

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A study is performed of the catalytic properties of Cu–Zn catalysts on Al2O3 and SiO2 supports (Acros) in the reaction of CO2 hydrogenation to obtain methanol. A sample of 30Cu15Zn/Al2O3 displays great selectivity toward methanol. A sample of 30Cu15Zn/SiO2 has the highest methanol performance. The methanol performance of a sample of 10Cu5Zn/Al2O3 is doubled when the pressure is raised from 10 to 30 atm, and a 94% increase in selectivity is observed. A sample of catalyst 10Cu5Zn/SiO2 does not lose its activity after 10 h of a catalytic reaction, and its methanol performance grows with repeated use

作者简介

K. Kim

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

A. Shesterkina

Faculty of Chemistry, Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

M. Tedeeva

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

K. Kartavova

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

P. Pribytkov

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

S. Dunaev

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

A. Kustov

Faculty of Chemistry, Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

参考

  1. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  2. Pokusaeva Y.A., Koklin A.E., Lunin V.V. et al. // Mendeleev Commun. 2019. V. 29. P. 382.
  3. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Funct. Matter. Lett. 2020. V. 2040004. P. 1.
  4. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Carbon. 2020. V. 168. P. 475.
  5. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  6. Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. Catal. 2021. V. 402. P. 130.
  7. Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Appl. Catal. B. 2022. V. 303. P. 120891.
  8. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  9. Zeolites and Zeolite-like Materials / Ed. by B.F. Sels, L.M. Kustov. 2016. P. 1–459.
  10. Tursunov O., Kustov L., Tilyabaev Z. // J. Petroleum Sci. Eng. 2019. V. 180. P. 773.
  11. Tursunov O., Kustov L., and Kustov A. // Oil and Gas Sci. Technol. 2017. V. 72 (5). P. 30.
  12. Tursunov O., Kustov L., and Tilyabaev Z. // J. Taiwan Inst. Chem. Engineers 2017. V. 78. P. 416.
  13. Kurtz M. // Catal. Lett. 2003. V. 86. P. 77.
  14. Saito M. // Catal. Surv. From Asia. 2004. V. 8. P. 285.
  15. Ma J., Sun N.N., Zhang X.L. et al. // Catal. Today. 2009. V. 148. P. 221.
  16. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  17. Jiang Y. // J. CO2 Util. 2018. V. 26. P. 642.
  18. Dasireddy V.D.B.C., Likozar B. // Ren. En. 2019. V. 140. P. 452.
  19. Meunier N., Chauvy R., Mouhoubi S. et al. // Ren. En. 2020. V. 146. P. 1192.
  20. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. Niu X., Gao J., Wang K. et al. // Fuel Process Technol. 2017. V. 157. P. 99.
  26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. Pirola C., Galli F., Bianchi C.L. et al. // En. Fuels. 2014. V. 28 (8). P. 5236.
  28. Boffito D.C., Galli F., Martinez P.R. et al. // Chem. Eng. Trans. 2014. V. 43. P. 427.
  29. Sun Q. // J. Catal. 1997. V. 167. P. 92.
  30. Mierczynski P. // Catal. Today. 2011. V. 176. P. 21.
  31. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  32. Ren H. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  33. Bukhtiyarova M. // Catal. Lett. 2017. V. 147. P. 416.
  34. Zhang C. // J. CO2 Util. 2017. V. 17. P. 263.
  35. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  36. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  37. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (52KB)
3.

下载 (19KB)
4.

下载 (51KB)
5.

下载 (19KB)
6.

下载 (54KB)
7.

下载 (52KB)
8.

下载 (26KB)

版权所有 © К.О. Ким, А.А. Шестеркина, М.А. Тедеева, К.Е. Картавова, П.В. Прибытков, С.Ф. Дунаев, А.Л. Кустов, 2023

##common.cookie##