Obtaining Methanol from CO2 on Cu–Zn/Al2O3 and Cu–Zn/SiO2 Catalysts: Effect of the Support and Conditions of the Reaction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A study is performed of the catalytic properties of Cu–Zn catalysts on Al2O3 and SiO2 supports (Acros) in the reaction of CO2 hydrogenation to obtain methanol. A sample of 30Cu15Zn/Al2O3 displays great selectivity toward methanol. A sample of 30Cu15Zn/SiO2 has the highest methanol performance. The methanol performance of a sample of 10Cu5Zn/Al2O3 is doubled when the pressure is raised from 10 to 30 atm, and a 94% increase in selectivity is observed. A sample of catalyst 10Cu5Zn/SiO2 does not lose its activity after 10 h of a catalytic reaction, and its methanol performance grows with repeated use

Sobre autores

K. Kim

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

A. Shesterkina

Faculty of Chemistry, Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

M. Tedeeva

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

K. Kartavova

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

P. Pribytkov

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

S. Dunaev

Faculty of Chemistry, Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

A. Kustov

Faculty of Chemistry, Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

Bibliografia

  1. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  2. Pokusaeva Y.A., Koklin A.E., Lunin V.V. et al. // Mendeleev Commun. 2019. V. 29. P. 382.
  3. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Funct. Matter. Lett. 2020. V. 2040004. P. 1.
  4. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Carbon. 2020. V. 168. P. 475.
  5. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  6. Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. Catal. 2021. V. 402. P. 130.
  7. Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Appl. Catal. B. 2022. V. 303. P. 120891.
  8. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  9. Zeolites and Zeolite-like Materials / Ed. by B.F. Sels, L.M. Kustov. 2016. P. 1–459.
  10. Tursunov O., Kustov L., Tilyabaev Z. // J. Petroleum Sci. Eng. 2019. V. 180. P. 773.
  11. Tursunov O., Kustov L., and Kustov A. // Oil and Gas Sci. Technol. 2017. V. 72 (5). P. 30.
  12. Tursunov O., Kustov L., and Tilyabaev Z. // J. Taiwan Inst. Chem. Engineers 2017. V. 78. P. 416.
  13. Kurtz M. // Catal. Lett. 2003. V. 86. P. 77.
  14. Saito M. // Catal. Surv. From Asia. 2004. V. 8. P. 285.
  15. Ma J., Sun N.N., Zhang X.L. et al. // Catal. Today. 2009. V. 148. P. 221.
  16. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  17. Jiang Y. // J. CO2 Util. 2018. V. 26. P. 642.
  18. Dasireddy V.D.B.C., Likozar B. // Ren. En. 2019. V. 140. P. 452.
  19. Meunier N., Chauvy R., Mouhoubi S. et al. // Ren. En. 2020. V. 146. P. 1192.
  20. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. Niu X., Gao J., Wang K. et al. // Fuel Process Technol. 2017. V. 157. P. 99.
  26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. Pirola C., Galli F., Bianchi C.L. et al. // En. Fuels. 2014. V. 28 (8). P. 5236.
  28. Boffito D.C., Galli F., Martinez P.R. et al. // Chem. Eng. Trans. 2014. V. 43. P. 427.
  29. Sun Q. // J. Catal. 1997. V. 167. P. 92.
  30. Mierczynski P. // Catal. Today. 2011. V. 176. P. 21.
  31. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  32. Ren H. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  33. Bukhtiyarova M. // Catal. Lett. 2017. V. 147. P. 416.
  34. Zhang C. // J. CO2 Util. 2017. V. 17. P. 263.
  35. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  36. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  37. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (52KB)
3.

Baixar (19KB)
4.

Baixar (51KB)
5.

Baixar (19KB)
6.

Baixar (54KB)
7.

Baixar (52KB)
8.

Baixar (26KB)

Declaração de direitos autorais © К.О. Ким, А.А. Шестеркина, М.А. Тедеева, К.Е. Картавова, П.В. Прибытков, С.Ф. Дунаев, А.Л. Кустов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies