INCRETIN RESPONSE TO ORAL INTAKE OF SODIUM CHLORIDE AND WATER IN RATS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that regulate metabolism and synergistically enhance insulin secretion. However, their potential role in the regulation of water-electrolyte balance remains insufficiently understood. The present study aimed to assess the contribution of GIP to water-electrolyte regulation in comparison with the established renal effects of GLP-1 in mammals and humans. Experiments were conducted on female Wistar rats using loading tests: oral administration of water and 50% glucose solution, as well as oral or intraperitoneal administration of 2.5% NaCl solution. Plasma osmolality, glucose, sodium ions, incretins, insulin, and glucagon were measured; renal function was evaluated by diuresis, urinary sodium excretion, and free water clearance. Following glucose administration, plasma GIP concentration increased more than fivefold, accompanied by rises in GLP-1 and insulin. After administration of water or NaCl, GIP secretion did not change, whereas GLP-1 levels increased in both cases. Fifteen minutes after oral NaCl administration, GLP-1 concentration rose 1.8-fold. Exogenous GLP-1 enhanced free water clearance after water loading and increased natriuresis after salt loading. In contrast, GIP administration did not significantly affect water excretion or urinary sodium excretion after the respective loading tests. These findings demonstrate the functional divergence of incretins and highlight a specialized role of GLP-1, but not GIP, in the regulation of renal function and water-electrolyte homeostasis.

About the authors

E. V Balbotkina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St. Petersburg, Russia

A. S Marina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St. Petersburg, Russia

E. I Shakhmatova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St. Petersburg, Russia

A. V Kutina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: kutina_anna@mail.ru
St. Petersburg, Russia

References

  1. Nauck MA, Meier JJ (2018) Incretin hormones: Their role in health and disease. Diabetes Obes Metab 1: 5–21. https://doi.org/10.1111/dom.13129
  2. Jorsal T, Rhee NA, Pedersen J, Wahlgren CD, Mortensen B, Jepsen SL, Jelsing J, Dalbøge LS, Vilmann P, Hassan H, Hendel JW, Poulsen SS, Holst JJ, Vilsbøll T, Knop FK (2018) Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 61(2): 284–294. https://doi.org/10.1007/s00125-017-4450-9
  3. Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, PerezTilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30: 72–130. https://doi.org/10.1016/j.molmet.2019.09.010
  4. Marks V (2019) The early history of GIP 1969–2000: From enterogastrone to major metabolic hormone. Peptides 122: 170155. https://doi.org/10.1016/j.peptides.2019.170155
  5. Elahi D, McAloon-Dyke M, Fukagawa NK, Meneilly GS, Sclater AL, Minaker KL, Habener JF, Andersen DK (1994) The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 51(1): 63–74. https://doi.org/10.1016/0167-0115(94)90136-8
  6. Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45(8): 1111–1119. https://doi.org/10.1007/s00125-002-0878-6
  7. Chia CW, Egan JM (2020) Incretins in obesity and diabetes. Ann N Y Acad Sci 146(11): 104–126. https://doi.org/10.1111/nysa.14211
  8. Liakos A, Karagiannis T, Avgerinos I, Malandris K, Tsapas A, Bekiari E (2023) Management of type 2 diabetes in the new era. Hormones (Athens) 22(4): 677–684. https://doi.org/10.1007/s42000-023-00488-w
  9. Carraro-Lacroix LR, Malnic G, Girardi AC (2009) Regulation of Na+/H+ exchanger NHES by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297(6): F1647–F1655. https://doi.org/10.1152/ajprenal.00082.2009
  10. Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC (2011) Mechanisms mediating the diuretic and natriuretic actions of the inertin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301(2): F355–F363. https://doi.org/10.1152/ajprenal.00729.2010
  11. Kutina AV, Marina AS, Shakhmatova EI, Natochin YV (2013) Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin Exp Pharmacol Physiol 40(8): 510–517. https://doi.org/10.1111/1440-1681.12119
  12. Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C (2004) Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89(6): 3055–3061. https://doi.org/10.1210/jc.2003-031403
  13. Muskiet MHA, Tonneijck L, Smits MM, van Baar MJB, Kramer MHH, Hoorn EJ, Joles JA, van Raalte DH (2017) GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13(10): 605–628. https://doi.org/10.1038/nrneph.2017.123
  14. Asmar A, Cramon PK, Simonsen L, Asmar M, Sorensen CM, Madsbad S, Moro C, Hartmann B, Jensen BL, Holst JJ, Bülow J (2019) Extracellular Fluid Volume Expansion Uncovers a Natriuretic Action of GLP-1: A Functional GLP-1-Renal Axis in Man. J Clin Endocrinol Metab 104(7): 2509–2519. https://doi.org/10.1210/jc.2019-00004
  15. Kutina AV, Golosova DV, Marina AS, Shakhmatova EI, Natochin YV (2016) Role of Vasopressin in the Regulation of Renal Sodium Excretion: Interaction with Glucagon-Like Peptide-1. J Neuroendocrinol 28(4). https://doi.org/10.1111/jne.12367
  16. Karavashkina TA, Balbotkina EV, Marina AS, Kutina AV (2021) Role of Proglucagon Peptides in Osmoregulation. Bull Exp Biol Med 170(5): 618–622. https://doi.org/10.1007/s10517-021-05118-2
  17. Natochin YV, Kutina AV, Marina AS, Shakhmatova EI (2018) Stimulus for Glucagon-Like Peptide 1 Secretion in Rats. Dokl Biol Sci 479(1): 57–59. https://doi.org/10.1134/S0012496618020084
  18. Irwin DM (2020) Molecular evolution of GIP and Exendin and their receptors. Peptides 125: 170158. https://doi.org/10.1016/j.peptides.2019.170158
  19. Cardoso JCR, Felix RC, Costa C, Palma PFS, Canario AVM, Power DM (2018) Evolution of the glucagon-like system across fish. Gen Comp Endocrinol 264: 113–130. https://doi.org/10.1016/j.ygeen.2017.10.003
  20. Anini Y, Brubaker PL (2003) Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 144(7): 3244–3250. https://doi.org/10.1210/en.2003-0143
  21. Hansen L, Lampert S, Mineo H, Holst JJ (2004) Neural regulation of glucagon-like peptide-1 secretion in pigs. Am J Physiol Endocrinol Metab 287(5): E939–E947. https://doi.org/10.1152/ajpendo.00197.2004
  22. Asmar A, Cramon PK, Asmar M, Simonsen L, Sorensen CM, Madsbad S, Moro C, Hartmann B, Rehfeld JF, Holst JJ, Hovind P, Jensen BL, Bulow J (2020) Increased oral sodium chloride intake in humans amplifies selectively postprandial GLP-1 but not GIP, CCK, and gastrin in plasma. Physiol Rep 8(15): e14519. https://doi.org/10.14814/phy.2.14519
  23. Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51(9): 2757–2763. https://doi.org/10.2337/diabetes.51.9.2757
  24. Guccio N, Alcaino C, Miedzybrodzka EL, SantosHernández M, Smith CA, Davison A, Bany Bakar R, Kay RG, Reimann F, Gribble FM (2025) Molecular mechanisms underlying glucose-dependent insulinotropic polypeptide secretion in human duodenal organoids. Diabetologia 68(1): 217–230. https://doi.org/10.1007/s00125-024-06293-3
  25. Anini Y, Hansotia T, Brubaker PL (2002) Muscarinic receptors control postprandial release of glucagon-like peptide-1 in vivo and in vitro studies in rats. Endocrinology 143(6): 2420–2426. https://doi.org/10.1210/endo.143.6.8840
  26. Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140(4): 1687–1694. https://doi.org/10.1210/endo.140.4.6643
  27. Veedfald S, Wu T, Bound M, Grivell J, Hartmann B, Rehfeld JF, Deacon CF, Horowitz M, Holst JJ, Rayner CK (2018) Hypersomolar Duodenal Saline Infusion Lowers Circulating Ghrelin and Stimulates Intestinal Hormone Release in Young Men. J Clin Endocrinol Metab 103(12): 4409–4418. https://doi.org/10.1210/jc.2018-00699
  28. Amouyal C, Andreelli F (2016) Increasing GLP-1 Circulating Levels by Bariatric Surgery or by GLP-1 Receptor Agonists Therapy: Why Are I,5 and the Clinical Consequences so Different? J Diabetes Res 2016: 5908656. https://doi.org/10.1155/2016/5908656

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).